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FLUID-LOADED VIBRATION OF THIN STRUCTURES DUE TO TURBULENT 

EXCITATION 

Abstract 

by 

Jason Robert Tomko 

Flow-induced structural acoustics involves the study of the vibration of a structure 

induced by a fluid flow as well as the resulting sound generated and radiated by the 

motion of the system.  The thesis examines several aspects of flow-induced structural 

vibration for fluid-loaded systems.  A new method, termed Magnitude-Phase 

Identification, is derived to experimentally obtain a modal decomposition of the vibration 

of a structure using two-point measurements.  MPI was used to measure the auto-spectral 

density of various modes for a non-fluid-loaded, rectangular, clamped plate excited by a 

spatially-homogeneous turbulent boundary layer.  These results agreed well with theory.  

Using MPI, it was shown that when both fluid-loading and a spatially non-homogeneous 

wall pressure field is applied to a structure that the mode shapes become dependent on 

the forcing field, an effect which does not occur when either characteristic is applied 

individually.  Furthermore, the resulting mode shapes are potentially highly asymmetric.  

It was shown through a discretized string model that these results can be attributed to the 
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increased damping induced by fluid loading.  Internal acoustic wall pressure fields due to 

a ducted rotor were measured, and it was shown that the acoustic effects of the rotor can 

be approximated by replacing the rotor with a continuous ring of dipoles located at the 

blade tip.  The finite length of the duct was accounted for through use of a method of 

images.  The theoretical results from this model match well with the measured values.  

Lastly, the vibration of a fluid-loaded duct excited by an internal rotor is measured 

through use of MPI.  The resulting vibration field appears similar to the field examined 

earlier due to fluid loading, with a decrease in the coherent vibration magnitude for 

increasing spatial separation from the reference location. 
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CHAPTER 1 

INTRODUCTION 

 

Flow-induced structural acoustics involves the study of the vibration of a structure 

induced by a fluid flow as well as the resulting sound generated and radiated by the 

motion of the structure.  This thesis will examine statistically stationary structural 

vibration which is induced solely by low Mach number flow over the surface of the 

structure.   The analysis will be restricted to thin structures with small magnitudes of 

motion which do not alter the flow field.   

Flow-induced structural acoustics under these conditions are relevant in numerous 

applications.  For example, the noise pollution generated by ventilation systems and 

aircraft engines often places practical limitations on the design of such systems.   As 

another example, the fuselage of an aircraft experiences an external flow which induces 

structural vibration; this can in turn radiate acoustics internal to the fuselage.  Another 

practical application involves rockets utilized to transport cargo such as satellites into 

space, formally known as carrier rockets.  These carrier rockets are structurally similar to 

a sealed duct, and the pressures generated within can cause damage to expensive, 

sensitive cargo within the carrier rocket.    
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1.1 Background and Focus of Current Research 

Blake [1] divides the method of solving a flow-induced structural acoustics 

problem into three general steps.  First, a model is developed for the stochastic wall 

pressure of the flow field.  Second, the wall pressure model is used in conjunction with 

the structural response model to predict the structural vibration.  This is often 

accomplished by decomposing the structure into its modes of vibration and then treating 

each mode as an independent single degree of freedom system.  The final step involves 

predicting the acoustic radiation due to the vibration of the structure.  These three steps 

are applicable to any flow-induced structural acoustics system.  This thesis will examine 

two specific systems: a thin, rectangular structure excited by a turbulent boundary layer 

and a thin-walled duct excited by an internal rotor. 

 

1.1.1 Solution Steps For Flow Over An Elastic Flat Plate 

Turbulent flow over a flat plate is a commonly-encountered problem.  Figure 1.1 

shows the flow chart of the various steps required in modeling the acoustic radiation due 

to turbulent flow over a flat plate and is separated into the three previously outlined steps.  

Orange blocks correspond to substeps involving modeling the fluid flow and 

corresponding excitation pressure.  Blue blocks correspond to substeps involving 

modeling the structural vibration.  Red blocks correspond to modeling the acoustic 

radiation. 
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Figure 1.1. Flowchart of solution procedure for turbulent flow over a flat plate. 

 

 The solution requires modeling the stochastic and spatial properties of the wall 

pressure of the flow field.  A simple and well-studied case is that of a fully-developed 

turbulent boundary layer over a smooth, flat plate with zero pressure gradient.  For this 

situation, the most common models used are those of Corcos [2,3], Chase[4,5], and 

Smol’yakov-Tkachenko [6].   A limited number of more complex flows have been 

studied by various authors.  Schloemer [7] studied the convection speed and spatial 

characteristics of the wall pressure of a turbulent boundary layer subjected to favorable or 

adverse pressure gradients.  Fricke [8] studied separated flows due to a fence in the flow.  

Farabee and Casarella [9,10] studied the flow due to forward and backward facing steps. 
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 The step of solving the structural vibration requires modeling the response of the 

structure to an arbitrary wall pressure excitation.  Blake [1] discusses a method for 

modeling an in vacuo finite-length structure subjected to stochastic forcing by 

decomposing the vibration into a series of spatial mode shapes and assuming each shape 

vibrates independently.  The wall pressure model and the structural model are then 

combined to predict the structural vibration.   

 The vibration of a structure can be utilized to predict the corresponding acoustic 

radiation, as is extensively discussed by Blake [1].  For the in vacuo case of a structure in 

an unbounded fluid medium, the acoustic radiation generated by the structural vibration 

has no effect on the vibration of the structure.  In the case of heavy fluid loading, where 

the mass of the fluid medium is large relative to that of the structure, the acoustic 

pressure generated by the structural vibration can itself contribute substantially to the 

wall pressure, creating a feedback which excites structural vibration.  In such cases, the 

acoustic pressure can be modeled as adding mass and damping to the structure.  

Furthermore, because the speed of sound in general is not the same as the wave bending 

speed within the structure, the feedback pressure generated by a specific mode of 

vibration can induce a wall pressure of a different mode, causing the modes of vibration 

to become coupled.  These factors induced by the fluid loading must be combined with 

the turbulence model in order to predict the wall pressure model that must then be 

combined with the structural vibration model.   
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1.1.2 Solution Steps For a Ducted Rotor 

Part of the objectives of this thesis was to apply the results of the relatively simple 

system of turbulent flow over a flat plate to a more complicated system.  A rotor within a 

duct was selected because it has analytically tractable boundary conditions and is a 

frequently encountered system in practice.  Despite the added complexity, the solution 

process follows a similar set of steps to that of a canonical flat plate excited by a 

turbulent boundary layer.  Figure 1.2 shows the flow chart of the various steps required in 

modeling the acoustic radiation due to ducted rotor generating flow within a duct.  As 

with Figure 1.1, in Figure 1.2 the flowchart is separated into the steps of modeling the 

flow/excitation, modeling the structure, and modeling the acoustics. 

 

Figure 1.2. Flowchart of solution procedure for a ducted rotor. 
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 When turbulent flow passes through the rotor, three pressure fields are generated: 

the acoustics radiated external to the duct, the acoustics internal to the duct, and the 

hydrodynamic pressure field.  Investigation of the acoustics radiated externally from the 

duct due to the rotor was performed by Stephens [11], Stephens and Morris [12], and 

Stephens et al. [13].  The predominant source of these acoustics was found to be 

turbulence ingestion noise, which corresponds to the acoustics generated when turbulent 

eddies in the incoming flow interact with the rotor.  The second pressure field generated 

is the internal duct acoustics, which is generated by a similar mechanism to the ingested 

turbulence noise and will be discussed in Chapter 6.  The hydrodynamic pressure field 

has similar characteristics to that of turbulent boundary layer flow.  The complete wall 

pressure model for the internal pressure field is obtained by combining the latter two 

pressure fields.   

 The structural aspects of the solution procedure for a ducted rotor are identical to 

those of a flat plate.  A structural model must be developed to predict the vibration of the 

thin duct due to an arbitrary pressure field.  This model is then combined with the 

complete wall pressure model to determine the vibration of the shell.  As with the case of 

a flat plate, the structural vibration can induce a wall pressure feedback if the surrounding 

fluid medium is heavy enough.   

 Like in the case of a flat plate, the structural vibration induces acoustic radiation 

external to the duct. Prediction of this radiation is believed to be well understood in the 

literature.  The acoustic radiation due to the structural vibration must then be combined 
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with the acoustic radiation from the rotor itself in order to determine the complete 

radiated acoustic pressure field. 

 

1.2 Summary of Research Questions 

The final goal of this research was to examine the vibration of a fluid-loaded duct 

due to flow induced by an internal rotor.  In order to do so, several other research 

questions were first encountered.   

In Chapter 4, a measurement technique termed Magnitude Phase Identification 

(MPI) is developed to measure the modal vibration of a structure.  Accelerometers could 

not be used as structures which are thin enough to be fluid loaded in air would have their 

mass substantially altered by the application of accelerometers.  Laser Doppler 

velocimetry (LDV) was used to measure the vibration of the structure, but it is 

impractical to simultaneously measure the vibration of all points of a structure using 

LDV’s due to the size and cost of these devices.  MPI was developed to provide a method 

of experimentally determining the auto-spectral density of vibration of each mode using 

two-points measurements.  In order to validate the technique, MPI was applied to the 

vibration of a non-fluid-loaded, rectangular structure excited by canonical turbulent 

boundary layer flow, and the results were compared to theoretical predictions of the 

vibration of each mode.   

Chapter 5 will investigate structural vibration under the simultaneous effects of 

non-homogeneous forcing and fluid loading.  These simultaneous effects are common in 

systems such as those involving underwater propulsion, where the mass of water often 
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results in a fluid loaded structure.  When both effects were present simultaneously, it was 

shown that the mode shapes become dependent on the forcing function, with the mode 

shapes skewing towards the locations where forcing is greater.  It was shown 

experimentally that this did not occur when these effects were applied individually.  A 

discretized string model was created to demonstrate that this effect can be attributed to 

the high damping caused by fluid loading. 

Chapter 6 examines the internal acoustic wall pressure field of a ducted rotor.  It 

was shown that the acoustics of the rotor could be modeled by replacing the rotor with a 

continuous ring of dipoles located at the blade tip. The finite length of the duct is 

accounted for by applying a method of images to the ring of dipoles relative to the duct 

inlet and exit. 

Chapter 7 examines the final case of a fluid-loaded duct excited by an internal 

rotor.  This case utilizes the answers of the previous research questions.  The duct wall is 

sufficiently thin that accelerometers would alter the vibration of the duct, so the MPI 

derived in Chapter 4 is required for the LDV’s to obtain measurements of the modal 

content of the vibration of the duct.  The duct is fluid-loaded, so the conclusions of 

Chapter 5 are required to explain the duct vibration.  The internal wall pressure examined 

in Chapter 6 excites the duct wall. 

The layout of this thesis will be as follows.  Chapter 2 will review important 

literature for the topics of this thesis.  Chapter 3 will discuss the experimental setups used 

in this research, which involves the measurement of the wall pressure and the structural 

vibration of a thin steel plate and a ducted rotor.  Chapter 4 will outline use of the 
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magnitude-phase identification (MPI) method for experimentally determining the auto-

spectral density of the vibration of each mode of a structure.  Chapter 4 also uses MPI to 

compare the experimental and theoretical auto-spectral densities of vibration of various 

modes for the canonical case of a non-fluid-loaded plate excited by a spatially-

homogeneous turbulent boundary layer.  Chapter 5 expands upon the work detailed in 

Chapter 4 by examining the effects of fluid loading and non-homogeneous forcing in 

order to show that a fundamental change occurs in the vibration of a structure when both 

of these effects are present simultaneously, but not when they are present individually.  

Chapter 6 will discuss the method for solving the internal acoustic pressure field of a 

ducted rotor as well as measurements validating these predictions based on previous work 

by Stephens [11], Stephens and Morris [12], and Stephens et al [13].  Such predictions 

have not been published in the literature with the exception of papers by the author of this 

thesis [14].  Chapter 7 will detail the final case, that of a fluid-loaded duct wall excited by 

an internal ducted rotor.  Chapter 8 will describe conclusions of the paper. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

  

This chapter focuses on reviewing literature related to this thesis, which is divided 

into two topics.  Section 2.1 focuses on literature related to predicting the vibration of 

thin structures.  Section 2.2 focuses on literature related to modeling wall pressure 

spectra.   

 

2.1 Structural Vibration 

 This review will focus primarily on literature which provides a basis for the 

analytical and experimental prediction of the response of a thin rectangular plate or duct 

wall subjected to stochastic, potentially non-homogeneous forcing under both in vacuo 

and fluid loaded conditions.     

 Blake [1] provides an extensive review of the fundamental equations of structural 

vibration.  In his analysis, the initial assumption is that any differential element of the 

structure can be modeled as a mass-spring-damper, where the standard spring force is 

replaced by a linear restorative force that is dependent on the type of structure involved.   

The governing equation for a structural element then takes the form 
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   ̈     ̇   ( )    ( ⃗  )   (2.1) 

where Cd is the viscous damping, p(y,t) is the fluctuating load per unit area on the surface 

of the structure, and L(ξ) is a linear operator representing the restorative force of the 

structure.  For the cases of a one-dimensional structure, ms and p(y,t) should be replaced 

by their one-dimensional analogs of mL and fluctuating loads per unit length, 

respectively.  The linear operator L(ξ) is the only significant difference between different 

types of structures and is given by 

 ( )        for a membrane subjected to uniform tension T , (2.2a) 

 ( )     
    for a thin plate of uniform stiffness Ds ,  (2.2b) 

 ( )   
   

     for a string of uniform tension T ,   (2.2c) 

 ( )    
   

     for a beam of uniform stiffness Ds .   (2.2d) 

Here, the stiffness term Ds is defined as  

   
   

  
  for a beam,    (2.3a) 

   
   

  (    )
  for a plate.    (2.3b) 

Note that the form of L(ξ) can potentially be used to model structures other than 

the ones listed.  For example, if one were to set L(ξ)=kspring ξ, where kspring is the spring 

constant of a linear spring, Equation (2.1) becomes the familiar equation for a mass-

spring-damper.  Because the restorative force in Equation (2.2) is based on the spatial 

gradient of the deflection, the deflection of all points on the structure are coupled. 
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To solve a bounded system, the response of the structure is separated into 

orthogonal eigenfunctions, each of which has a unique and in general independent 

resonant frequency.  As detailed by Blake [1], one can assume that the solution to the 

equations of motion for a plate takes the form 

     ∑     ( ⃗)  ( ) 
      ,  (2.4) 

where n is an integer representing the mode number, an is a constant coefficient for mode 

n, ψn(y) is a spatial-dependent eigenfunction for mode n, and gn(t) is a time-dependent 

coefficient function for mode n. 

The eigenfunctions ψn(y) must be orthogonal to one another, must satisfy 

Equation (2.1) for the case of p=0, and must satisfy the boundary conditions of the 

problem.  In many two-dimensional systems the eigenfunctions demonstrate the property 

of separability based on the two independent coordinates.  In such cases, it is common to 

write Equation (2.4) in a form similar to 

  ∑ ∑      
( )(  )  

( )(  )   ( ) 
   

 
    ∑ ∑       ( ⃗)   ( ) 

   
 
    .  (2.5) 

Note that for separable eigenfunctions, Equation (2.4) and both forms of Equation (2.5) 

are simply different methods of writing an identical expression and amount to little more 

than a different method of indexing the summation.   

The eigenfunctions of the structure have no inherent magnitude to them.  Blake 

[1] chooses to normalize the magnitude of the eigenfunctions as per 

∬   ( ⃗)  ( ⃗)  
  

        ,  (2.6) 
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where Ap is the area over which the eigenfunctions are defined (i.e. the area of the 

structure) and δmn is defined as being equal to 1 for m=n and equal to zero otherwise.  

Equation (2.6) both expresses the magnitude of the eigenfunctions and enforces the 

orthogonality condition.  Unless otherwise noted, this is the normalization for the 

eigenfunctions that will be utilized in this thesis. 

The expression of a function as an infinite series of orthogonal basis functions 

will be termed a “modal expansion”; similarly, the calculation of the magnitudes of each 

of these basis functions will be referred to as “modal decomposition”.  The term “Fourier 

series” will be reserved for the special case of a modal expansion using sine/cosine 

functions. 

 Using Equation (2.4), the linear stiffness operator can be rewritten as 

 (  ( ⃗))      
   ( ⃗)  ( ) for bars and plates ,    (2.7a) 

 (  ( ⃗))     
   ( ⃗)  ( ) for strings and membranes .   (2.7b) 

where kn is the wavenumber associated with the eigenfunction ψn(y).  The wavenumber is 

defined as 

  
 

 
 

  

 
  ,   (2.8) 

where ω is the angular frequency of vibration, c is the speed of the wave, and λ is the 

wavelength of the wave.  For structural vibration, c represents the bending speed of the 

wave and λ is the wavelength associated with this eigenfunction.   
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 By substituting Equation (2.4) into Equation (2.1) and making use of the 

orthogonality condition, Equation (2.1) can be recast as a series of second order equations 

corresponding to one spatial mode each, given by 

[    ̈( )     ̇( )      
   ( )]    

 

  
∬  ( ⃗  )  ( ⃗)  

  
    ( )  . (2.9) 

Here, Pn(t) can be interpreted as the wall pressure field projected onto the shape of the 

eigenfunction.  One will note that the equation for each mode is identical to that of a 

mass-spring-damper, where the damping is a “loss factor” unique to each mode.  The 

undamped natural frequency for mode n is then readily found to be 

  
    

   

  
  for a plate ,    (2.10a) 

  
    

  

  
  for a membrane .   (2.10b) 

 Equation (2.9) can be viewed as the governing equation for bounded structural 

dynamics.  However, it is designed for use with deterministic functions, while turbulent 

boundary layers are inherently stochastic in nature.  Thus, Equation (2.9) must be 

converted into a stochastic form. 

As defined by Blake [1], let the temporal Fourier transform pair of velocity be 

defined as 

 (   )  ∫  (   )       
 

  
  ,   (2.11a) 

 (   )  
 

  
∫  (   )      

 

  
  .   (2.11b) 
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where V(ω,y) represents the velocity at a specific frequency and can be expressed by a 

spatial modal expansion of 

 (   )  ∑   ( )  ( ⃗)   .  (2.12) 

While Equation (2.11) is explicitly a temporal expansion of sine and cosine basis 

functions, no assumptions should be made as to the basis functions used in the spatial 

modal expansion of Equation (2.12).  Combined, these provide a modal expansion of the 

velocity in terms of both space and time. 

 As long as the fluid loading on the structure is light (to be further detailed later), 

then one can assume that the modes are uncoupled.  In this case, Equation (2.9) can be re-

written in terms of the Fourier quantities as 

  ( )

  ( )
 

  

  [(  
    )       ]

  ,  (2.13) 

where Pn(ω) is the Fourier transform for Pn(t) as defined in Equation (2.9); one can 

envision this as the temporal-spatial modal expansion of the pressure field on the 

structure, much like Equation (2.11) is the temporal-spatial modal expansion of the 

velocity field.  ηn is a mode-dependent damping ratio that replaces the viscous damping 

term Cd used earlier.  For lightly fluid loaded cases ηn is caused by structural damping ηs, 

but for heavily fluid-loaded cases an acoustic radiation damping factor ηr should be added 

to this.  The transfer function based on auto-spectral density can be written as 

    

    
 

  

  
 [(  

    )  (     ) ]
 ,  (2.14) 
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where Φv,n and Φp,n are the coefficients associated with mode n of the spatial modal 

decomposition of velocity and pressure, respectively; these also correspond to the auto-

spectral density of mode n of the vibration and pressure, respectively.  Equation (2.14) is 

the governing equation of structural dynamics for a single mode in the spectral domain, 

and is identical to the spectral transfer function for a mass-spring-damper. 

The response of the structure is can be split into two frequency regimes.  For low 

frequencies over which the resonant frequencies of excited modes are separated by large 

differences in frequency, each mode can be analyzed as an individual mass-spring-

damper, and the total response is obtained by simply adding these responses.  For higher 

frequencies, the differences in resonant frequencies tend to become so small that for any 

given frequency multiple modes will be resonating.  In such cases, one utilizes the modal 

density, defined as the number of resonant frequencies present within a change in 

frequency.  The forcing function acting on the structure is then integrated across these 

modes, where for low damping the resonant peak dominates the structural response 

function.  This thesis will primarily focus on the former regime, where modal density is 

low. 

Blake discusses that, as the structure vibrates, acoustic waves are generated which 

contribute to the wall pressure exciting the structure, creating a feedback loop.  The effect 

is negligible if the structure is not fluid loaded.  The fluid loading factor is defined by 

Blake[1] as  

  
    

   
 ,    (2.15) 
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where c0 is the speed of sound in the fluid medium, ρ0 is the density of the fluid, ms is the 

mass per unit area of the structure, and ω is the angular frequency of vibration.  Noting 

that c0/ω is proportional to the wavelength of the acoustic wave, one can interpret 

Equation (2.15) as being the ratio of the mass per unit area of a wavelength of the fluid to 

the mass per unit area of the structure; hence, high values of β correspond to systems 

where the mass of the fluid is large compared to the mass of the structure.  In particular, 

structures are considered to be fluid loaded for values of β>>1.  Blake assumes that the 

total pressure on the structure can be written as  

 (   )     (   )     (   ) ,  (2.16) 

where pbl is the pressure induced by the boundary layer and pa is the pressure induced by 

the acoustic radiation, such that when fluid loading is small, pa will be negligible.  It is 

still assumed that the vibration of the structure does not change the flow field of the fluid, 

such that pbl is unaffected by the structural vibration.  Utilizing the shape functions of the 

structure, Blake derives that pa for mode <m,n> of vibration is given by 

     (    )  
 

(  ) 
    ∑    ( )∬

   ( )   ( )

√  (
 

  
)
 

 
   √  

    

  
 

      , (2.17) 

where the summation is carried out for all modes <o,p>, the integration is carried out for 

all wavenumbers, and the resulting pressure is for mode <m,n>.  k0 is the acoustic 

wavenumber (equal to ω/c0).  y2 is the location perpendicular to the surface of the 

structure, such that y2=0 represents the location of the surface of the structure.  The modal 

shape function is defined as 
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  ( )  ∬       
  

  ( )    .  (2.18) 

Even though the eigenfunctions are orthogonal, there exists no orthogonality 

condition for the modal shape functions, and as such, the integral in Equation (2.17) is 

not necessarily zero for <m,n>≠<o,p>.  Thus, it is possible for the <m,n> modes of 

vibration of the structure to induce an acoustic pressure field at the <o,p> mode of 

vibration, creating modal coupling. 

Even for a fluid loaded structure, if the fluid loading is not too large, the effects of 

the modal coupling can be neglected.  In such cases, the integration of Equation (2.17) is 

only non-zero for mn=op.   Combining this with y2=0 (i.e. along the wall) yields 

     (      )  
 

(  ) 
       ( )∬

|   ( )| 

√  (
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 . (2.19) 

The primary acceptance region of Equation (2.19) corresponds to values of the variable 

of integration k which are close to the kmn, the wavenumber associated with the 

eigenfunction of that mode, because the shape function of a given mode is largest for 

wavenumbers that correspond to this mode.   

 Two important cases of Equation (2.19) emerge.  If the magnitude of kmn is 

significantly less than k0 (corresponding to cases where the wavelength of vibration in the 

structure is greater than the wavelength of sound), then the denominator and thus the 

overall integration in Equation (2.19) is predominantly real.  In this case, pa can be 

thought of as a real impedance on the structure, which results in the acoustic 

backpressure appearing as a resistance or damping terms.  If the magnitude of kmn is 
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significantly larger than k0 (corresponding to cases where the wavelength of vibration in 

the structure is less than the wavelength of sound), then the denominator and thus the 

overall integration in Equation (2.19) is predominantly imaginary.  In this case, pa can be 

thought of as an imaginary impedance on the structure, which appears as an inertial term 

or added mass to the structure.  As there are an infinite number of wavenumbers and 

eigenfunctions present in the structure, it is possible that both effects can be present at the 

same time.  Thus, even in the case of negligible modal coupling, heavy fluid loading has 

the effect of increasing the apparent mass and/or damping of the structure. 

Recognizing these two effects, the acoustic pressure can be written in the form 

     (   )  (         )   ( ) . (2.20) 

Here, mmn is the accession to inertia per unit area (i.e. the added mass) and corresponds to 

the imaginary portion of Equation (2.19).  For rectangular plates in the low frequency 

region this is given by  

    
  

   
     (2.21) 

for values of kmn>k0; for more complex situations the integration in Equation (2.19) must 

be carried out for the specific geometry.  rmn is the radiation resistance per unit area and is 

given by 

            ,   (2.22) 

where σmn is the modal radiation efficiency, defined by 
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 ,  (2.23) 

which is the real portion of Equation (2.19).  For wavenumbers such that k0>>kmn, σmn is 

roughly equal to one. 

 With these values, Blake [1] rewrites the governing equation of motion for a 

single mode of a plate as 

[(       )     (               )     
   ]   ( )          ( ) , (2.24) 

where ηs is the structural component of the damping ratio and ωmn is the in-vacuo 

resonance frequency of the plate for mode <m,n>.  The natural frequency of the each 

mode of the fluid-loaded system is given by 

(   
 )             (   

 )        (
  

      
) . (2.25) 

The acoustic radiation component to the system’s damping ratio is given by 

           ,   (2.26) 

with the damping ratio of the system being the sum of the structural and radiation 

damping.  For plates which are not fluid loaded, the fluid loading factor of a plate at its 

first natural frequency will roughly quadruple when its thickness is cut in half.  This is 

due to both the mass per unit area being reduced by half and the natural frequency 

roughly doubling, both of which influence the fluid loading factor.  As the natural 

frequency is dependent on the fluid loading factor, as shown by Equation (2.25), the fluid 
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loading factor will be slightly larger than this relationship implies when fluid loading is 

significant. 

 Skelton and James [15] performed an analysis of a fluid-loaded infinite plate 

based on the equation of motion developed by Sophie Germain for a thin plate in pure 

bending.  Because the analysis is completed for an infinite plate rather than a bounded 

plate, the quantities of the system are converted to spectral field quantities rather than the 

discrete mode numbers and eigenfunctions present in a bounded system.  Like Blake, 

Skelton and James conclude that the fluid loading terms appear as a resistance for cases 

where the structural wave number is less than the acoustic wave number and that the fluid 

loading terms appear as a mass for cases where the structural wave number is greater than 

the acoustic wave number.  Unlike Blake, Skelton and James make no mention of the 

possibility of modal coupling, likely because the analysis of Skelton and James makes no 

mention of modes. 

 Leissa [16,17] analyzed the response of specific shell (referring to a structure 

which is too thin support bending moments) and plate geometries as derived from the 

fundamental equations of motion for these structures.  In the case of shells, Leissa 

presented various simplifications as proposed by previous authors and evaluated the 

results of these simplifications, usually through use of the principle of virtual work.  In 

the case of plates, Leissa directly solved the fourth order equation of motion for a plate.  

Leissa’s shell analysis focused primarily on thin cylindrical ducts, though certain non-

cylindrical geometries received a small amount of attention.  The plate analysis primarily 

focused on circular and rectangular plates.  In each of these cases, Leissa examined the 

characteristics of the structure under a plethora of boundary conditions.  Most of the 
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results focused on the natural frequencies and mode shapes of the lowest-frequency 

modes of the structures.   

 Morse and Ingard [18] provided a derivation and then analysis of the equations of 

motion for strings, rigid bars, membranes, and plates.  While there are some differences 

between the one- and two-dimensional cases of structural vibration, the string functions 

much like a one-dimensional version of a membrane, and the rigid bar functions much 

like the one-dimensional version of a plate.  Morse and Ingard highlight many of the 

phenomenona seen in membranes and plates by explaining them in the context of the 

simpler one-dimensional cases. Most notably analyzed is the concept of dispersive vs. 

non-dispersive waves, with dispersive waves showing unique characteristics due to their 

bending speed being frequency-dependent. 

 Filippi [19] analyzed the response of plates and membranes through use of energy 

methods such as the principle of virtual work.  For simple homogeneous systems such 

analysis is simply a different method to reach the same conclusion as is obtained from 

application of Newton’s Second Law.  Filippi demonstrated how such methods can be 

utilized to solve non-homogenous structures, such as plates of varying thickness.  In 

particular, Filippi analyzed the excitation and acoustic radiation of a thin baffled 

cylindrical shell by an internal turbulent flow. 

 Dyer [20] performed early work on the response of a thin plate due to random 

excitation which was later experimentally validated by Maestrello [21].  The correlations 

of the pressure field were assumed to have properties that are common in turbulent flows: 

exponential decay, small scales compared to the size of the plate, and constant convection 
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speed over the plate.  Dyer concluded that for excitation convection speeds much less 

than the bending wave speed of the plate that the convection speed has little effect on the 

plate response.  However, when the convection and bending speeds are similar, the 

response can be considerably increased.  Both Dyer and Maestrello found that the main 

energy of the vibrating structure was centered around the convection velocity, with the 

highest energy at the lowest frequency and wave number.  Leibowitz [22] obtained 

similar results to Maestrello but expanded the work to account for additional effects such 

as both the added mass and acoustical damping effects imposed by fluid loading. 

 Davies [23] provided an early analysis on a thin plate adjacent to an infinite fluid-

filled half space by beginning with the coupled fluid-structure equations, including 

damping effects in the structure, and solving these equations through use of spectral 

methods.  Davies analyzed the effects of fluid loading as well as the relative importance 

of the structural damping, radiation damping, and modal coupling in the structure. 

 Han et al. [24] predicted the vibration of a thin plate using a method known as 

energy flow analysis.  The premise of this analysis is that the energy of the system can be 

broken into stored energy, dissipated energy, and energy transferred between the 

structure and fluid, which must balance.  Using a laser vibrometer, the vibration of a thin 

steel plate was measured when subjected to two different excitation flows: a developed 

turbulent boundary layer and a separated flow re-attaching partway along the plate.   

Using the Corcos and Smol’yakov models for the wall pressure spectra, Han was able to 

relatively accurately predict the vibratory response of the plate at various frequencies as 

measured in the experiment.  Han [25] showed that energy flow analysis could be used in 

conjunction with computational fluid dynamics to determine the structural vibration in 
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cases where little is known a priori about the flow field exciting the structure.  In an 

extension to the studies by Han, Park et al. [26] utilized energy flow analysis to predict 

the response of a thin plate subject to non-canonical boundary conditions, such as 

boundary conditions which dissipated energy; the predictions were validated against 

experiments run during the course of the study. 

Maury et al. [27] developed an extensive analytical method for utilizing spectral 

methods to predict the vibration of a thin plate subjected to a spatially and temporally 

stochastic pressure field.  As examples of the application of this method, Maury et al. 

compared the structural response induced by a turbulent boundary layer to those of a 

diffuse acoustic field and a spatially uncorrelated pressure field.  In the second portion of 

this paper, Maury et al. [28] were able to successfully predict aircraft panel vibration in 

high subsonic flow as measured in previous experiments through use of the Corcos 

model. 

 Ciappi et al. [29] performed an experimental simulation of flow over a ship hull 

by towing a model ship in a large water tank.  The experimental method allowed for a 

heavily fluid loaded structural vibration problem without the background noise associated 

with circulatory systems such as pumps.  A portion of the ship’s hull was replaced with a 

thin Plexiglas plate and accelerometers were used to measure the response at eight 

random locations on the plate.  The study of Ciappi et al. concluded that the Corcos 

model provided unsatisfactory prediction of the structural vibration, particularly at low 

frequencies.  Meanwhile, the Chase model provided relatively accurate predictions of the 

structural vibration but tended to become inaccurate for higher frequencies, albeit an 

improvement over the Corcos model; however, the authors conceded that the mismatch 
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between the prediction and experimental results at high frequencies may be caused by 

poor spatial resolution amongst the sensors in the experiment. 

 Several authors have developed methods other than classical solution methods for 

use in specific situations.  Filippi et al. [30] demonstrated how the response of a fluid-

loaded system can be solved based on any excitation, such as period, stochastic, or 

transient excitations, by expanding the resonance modes in the harmonic regime.  Collery 

and Guyader [31] predicted plate vibration through a minimization of error technique.  

By using the mode shapes of the in-vacuo solution as a basis for the method, the analysis 

was able to predict the response of a fluid loaded plate with fewer calculations than 

required from the classical solution methods.  Mazzoni [32] developed a method of 

predicting panel response from stochastic pressure field by approximating the field as a 

deterministic forcing function. 

 Finnveden [33] conducted a study on the structural vibration of a duct subjected 

to an internal turbulent boundary layer utilizing a modified version of the Corcos and 

Chase models.  The study concluded that both models provided for reasonably accurate 

predictions of the structural vibration for low frequencies, but only the modified Chase 

model provided for accurate vibrational predictions at high frequencies.  Grant [34] 

calculated the response for a fluid-loaded thin plate with smoothly varying elastic 

properties along the wall of a rectangular duct as well as the acoustic radiation of the 

plate, a first step in calculating the response for non-homogeneous structures. 
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2.2 Pressure Field Models 

 Prediction of the structural vibration of the system requires knowledge of the 

pressure field which is exciting it.  Various models already exist in the literature to 

predict pressure fields under common flow conditions.  The limitation here is that one 

cannot have a simple, comprehensive model for all possible flows and geometries.  In this 

thesis the focus will be on the pressure fields of a turbulent boundary layer over a flat 

plate and the pressure inside of a duct induced by a rotor.  Both of these systems receive 

at least some attention in the literature, and thus the focus of the research will be on how 

to effectively apply these models rather than development of completely new models. 

 All turbulent boundary layers are inherently stochastic in nature.  To perform any 

analysis one must determine statistical parameters that allow the system to be solved in a 

deterministic fashion.  Blake [1] provides an extensive outline on the use of correlations 

and spectra to define the stochastic pressure field in a deterministic form.  Graham [35] 

and Han [36] provide summaries of some of the various wavenumber frequency pressure 

spectra models available.   

 

2.2.1 Pressure Field for a Flat Plate Turbulent Boundary Layer 

There are three common pre-existing choices for the wall pressure model of a fully 

developed turbulent boundary layer over a flat plate: the Corcos model [2,3], the 

Smol’yakov-Tkachenko model [6], and the Chase model [4,5].  Corcos provides a 

relatively simple formulation that utilizes the most basic statistics of a turbulent boundary 

layer over a flat plate to predict the wave number – frequency content of the pressure 
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field.  The Corcos model tends to drastically over-predict the pressure spectra for low 

wave numbers.   

As summarized by Borisyuk and Grinchenko [37] and Han et al. [36], the Corcos 

model assumes that for a spatially and temporally homogenous pressure field, the 

pressure cross-spectral density between points a and b in rectilinear coordinates can be 

written as a separable function of the form 

   (         )     ( )  (      )  (      ) 
         , (2.27) 

where  

 Δx is the separation distance between points a and b in the streamwise direction 

 Δy is the separation distance between points a and b in the spanwise direction 

 ω is the angular frequency of the pressure 

 Uc is the convection velocity of the flow, often approximated as 70% of the free 

stream velocity 

 Φpp(ω) is the auto-spectral density of the pressure at point a; this will be the same 

at every point because of the assumption of spatial homogeneity. 

 B1 and B2 are the separated portions of the function which determine the spatial 

relationship of the pressure model 

B1 and B2 are often approximated as exponential decay functions, in which case the 

Corcos model becomes 

   (         )     ( )    |      |    |      |          , (2.28) 
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where γ1 and γ2 are chosen to obtain agreement with experimental results, with γ1 = γ2 

=0.7 being a common choice.  For structural dynamics, it is generally more useful to use 

a pressure model with dependence on the wave number.  This can be found by taking a 

Fourier transform of Equation (2.28), in which case one finds the wavenumber-frequency 

pressure spectra model to be 

  (       )     ( )
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 , (2.29) 

where kx and ky are the streamwise and spanwise wavenumbers, respectively, between 

points a and b; here, the wave number is defined as 2π divided by separation distance. 

Efimtsov [38] followed the same philosophy as Corcos but developed new models 

for the correlation lengths based on an extensive series of measurements on aircraft.  

Following Efimstov, Smol’yakov and Tkachenko [6] based their model on the boundary 

layer thickness and separation distance.  However, instead of assuming that the pressure 

spectra was a product of a streamwise contribution and a spanwise contribution (a 

characteristic known as separability), Smol’yakov and Tkachenko utilized a single 

coherence function combining both terms in a non-separable fashion.  The resultant 

function was an improvement over Corcos for low wavenumbers but still over-predicted 

the pressure spectra for low wave numbers.  To compensate, a series of correction factors 

was added in the low wave number regime.   

Attempting to correct for the low wavenumber errors of the Corcos model, Ffowcs 

Williams [39] developed a model for the wave-number pressure spectra based on 

Lighthill’s acoustic analogy, but the resultant expression contained several constants and 
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functions which would have to be obtained experimentally; to the best knowledge of the 

author of this thesis, these still remain unknown.  Chase [4,5] followed the same premise 

as the Ffowcs Williams but based on experience applied various assumptions which 

resulted in a new form which also contained several constants which must but also can be 

determined experimentally.  Chase provided suggestions as to the values these constants 

should be set to, though these constants can be flow-dependent. 

A generic comparison of these models was made by Borisyuk and Grinchenko [37], 

who concluded that Chase and Smol’yakov-Tkachenko provided the best agreement with 

experimental data as per Martin and Leehey [40].  Graham [35] also compared these 

models specifically with the intention of determining which models were most accurate 

for predicting structural vibration and acoustic radiation, particularly for cases pertaining 

to transport aircraft.  Graham concluded that the best model to use was situationally 

dependent and that any of the three models were viable under certain conditions.  Graham 

suggested that the Smol’yakov-Tkachenko model gave the most accurate results but that 

in some cases the additional accuracy may be too small to justify the substantially 

increased complexity of the model.   

None of these choices receives exclusive praise as the best model to use in the 

literature, with various authors praising the merits of each of these models.  Graham [35] 

provided a comparison of these models that is worth briefly reviewing.  Graham’s 

comparison is shown in Figure 2.1, showing the magnitude of the cross-spectral density 

for fixed spanwise locations.  The horizontal axis is defined such that a value of one 

corresponds to the convective wave number.  The convective wave number is defined as  
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  ,    (2.30) 

where ω is the angular frequency and Uc is the convective velocity.  The convective 

velocity is defined as the speed at which structures in the flow convect downstream and is 

often estimated to be roughly 70% of the free stream velocity. 

Figure 2.1 shows that the models tend to be relatively close near the convective 

wave number (and even for this point there is disagreement amongst the models) but tend 

to diverge drastically for values not near the convective wave number.  Chase and 

Smol’yakov-Tkachenko tend to show the closest agreement to one another.  Note that 

Chase I was the original model developed by Chase whereas Chase II corresponds to a 

model that relaxes some of the analytical restrictions in the low wave number regime; the 

difference is generally negligible outside of the subconvective regime (corresponding to 

wave numbers less than the convective wave number).  Corcos substantially over predicts 

both Chase and Smol’yakov- Tkachenko, with the predictions seeming worse in the 

subconvective regime than the superconvective regime. 
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Figure 2.1. Comparison of the Corcos, Efimstov, Williams, Smol’yakov-Tkachenko, and 

Chase models.  A horizontal axis value of one corresponds to the convective 

wavenumber. 

 

A limited number of more complex turbulent boundary layer flows have been 

studied by various authors.  Schloemer [7] experimentally measured the convection speed 

and spatial characteristics of the wall pressure of a turbulent boundary layer subjected to 

favorable or adverse pressure gradients.  Schloemer concluded that, all else equal, the 

differences between the spatial characteristics in turbulent boundary layers subjected to 

adverse, zero, and favorable pressure gradients were primarily due to the difference in the 

convection velocity, with favorable pressure gradients having faster convection velocities 

and adverse pressure gradients having slower convection velocities.  Fricke [8] studied 
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the single-point root-mean-square pressure of separated flows due to a fence in the flow.  

Farabee and Casarella [9,10] studied the flow due to forward and backward facing steps. 

As detailed previously, for a bounded structure, the wall pressure field enters the 

solution through the calculation of the projection of the pressure field onto the mode 

shapes of the structure, Pn(t).  The calculation of Pn(t) is shown in Equation (2.9) and has 

no requirement for the wall pressure to be spatially homogeneous.  In this regard the 

procedure for calculating the vibration of a structure subjected to non-homogeneous 

forcing should be identical to that of a structure subjected to homogeneous forcing as 

long as the non-homogeneous wall pressure can be modeled. 

 Use of the Corcos, Chase, or Smol’yakov-Tkachenko model requires a spatially 

statistically homogeneous wall pressure field.  These models calculate the cross-spectral 

density of wall pressure between two points as being the product of the wall pressure 

auto-spectral density multiplied by a coherence-based factor dependent on separation 

distance.  Following upon the work of Corcos, Schloemer [7] experimentally measured 

this coherence-based factor for adverse, zero, favorable pressure gradients and found that 

the difference in this factor between the three cases was primarily due to the change in 

convection velocity caused by the pressure gradient.  Schloemer labels these factors the 

magnitude of the normalized longitudinal and lateral cross-spectral densities, which in 

this paper shall be denoted as Af and Bf, respectively.  These are defined as 

   
|   (      )|

   ( )
 ,  and  (2.31) 

   
|   (      )|
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 ,    (2.32) 
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where Schloemer assumes that the auto-spectral density of pressure is spatially 

homogeneous.  Schloemer experimentally determined Af and Bf.  As the convection 

velocity only affects the streamwise direction, Schloemer found that Bf was nearly 

identical for adverse and favorable pressure gradients.  Schloemer’s work implies that the 

Corcos, Chase, and Smol’yakov-Tkachenko models may be applicable to turbulent 

boundary layers where the pressure smoothly varies as long as the equations are modified 

to account for the change in convection velocity over the surface.   

In the context of energy flow analysis, Han et al. [24] calculated the non-

homogeneous spatial pressure properties of flow due to a fence upstream of the flow 

based on the work of Farabee and Casarella [9,10].  Farabee and Casarella experimentally 

measured flow over a forward and backward facing step, which produces unattached, re-

attaching, and re-attached zones similar to the zones created by the fence used by Han et 

al.  It was assumed that the three zones were completely uncorrelated.  Han et al.’s 

calculation of the wall pressure field involved a combination of wall pressure 

measurements and computational fluid dynamics. 

 

2.2.2 Pressure Field Due to a Ducted Rotor 

 The pressure spectra present in a duct can be separated into hydrodynamic and 

acoustic components.  The radiated acoustic components were studied extensively by 

Stephens [11]; Stephens and Morris [12]; and Stephens et al [13].  In an extension of 

these works, the internal duct acoustics were studied by the author of this thesis and will 

be discussed in Chapter 5.  The acoustic pressure spectra was assumed to be generated by 
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the rotor interacting with a turbulent flow which acts as an unsteady pressure on the 

surface and thus generates sound.  The previous authors found two turbulent sources 

which resulted in sound radiation from the rotor.  The first source is known as “self 

noise”, which arises when the flow passing over a rotor blade generates its own turbulent 

boundary layer along the blade, like flow over a flat plate would.   The second source is 

known as “approach noise” and occurs when the rotor interacts with unsteady turbulent 

pressures in the incoming flow.  The approach flow can be broken further into two 

components as categorized by Blake [1]: small scale turbulence, which interacts with 

only one rotor blade as it passes through, and large scale turbulence, which interacts with 

multiple blades.  It was found that approach noise tends to dominate the radiated 

acoustics from a rotor, and thus in general self noise can be neglected when modeling the 

acoustics of a ducted rotor. 

 Hanson [41] studied turbulence ingestion noise generated by both periodic inflow 

disturbances and large scale anisotropic turbulence and identified sharp peaks in the 

resultant acoustic spectra from both sources, whereas previously these peaks had only 

been attributed to the former.  Moiseev et al. [42] studied a ducted rotor with various 

inflow conditions and number of rotor blades, concluding that most of the sound was 

generated due to the interaction of the hub and tip regions of the rotor with the ingested 

boundary layer.  Ganz et al. [43] performed an experiment which involved the capability 

to remove the boundary layer from the ingested flow.  The study concluded that the 

boundary layer was a significant source of sound in a ducted rotor and was the cause of 

spikes in the sound spectra at multiplies of the blade passing frequency. 
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 Following the results of Ganz et al., many researchers have investigated the 

relationship between turbulent structures stretched in the axial direction and pressure 

spectra generated by the rotor with broad peaks at multiples of the blade passing 

frequency.  Glegg and Walker [44] incorporated anisotropy into the wavenumber 

frequency pressure spectra based on three turbulent length scales, concluding that “long 

thin eddies stretched in the direction of the flow are more likely to cause blade tones or 

spectral humps than isotropic eddies”.  However, Joseph and Perry [45] found that the 

turbulent length scales reported by Ganz et al. were an order of magnitude too small to 

account for the broad humps at multiples of the blade passing frequency.  Martinez [46] 

developed a model for determining the thrust and ultimately acoustic radiation of a rotor 

subjected to anisotropic turbulence.  The analysis provided a physical explanation for the 

broad humps in the pressure-frequency spectra, deemed the “haystacks”, around 

multiples of the blade passing frequency.  Atassi and Logue [47] predicted broad humps 

at multiples of the blade passing frequencies by using by using rapid distortion theory to 

develop a wavenumber spectra model that can account for anisotropic turbulence.  

Furthermore, Golubev and Atassi [9] examined the effects on the internal acoustic field 

of a duct due to the presence of a swirling flow, which causes a refraction effect in the 

acoustic waves. 

The aforementioned literature indicates that the primary source of acoustics 

radiated by a ducted rotor arises from the rotor tip interacting with long eddies contained 

within the ingested casing turbulent boundary layer flow, which corresponds to the 

previously-mentioned large scale turbulence.  Such eddies are not necessarily correlated.  
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CHAPTER 3 

EXPERIMENTAL SETUP 

 

This chapter describes the two experimental models that were used to support the 

current research: one to study the structural vibration of a flat plate excited by a turbulent 

boundary layer, and one to study the structural vibration of a duct excited by an internal 

rotor.  While these two experimental setups are largely independent of one another, each 

was designed to allow for measureable structural vibration, measureable wall pressure, 

and controllable structural and acoustic boundary conditions. 

 

3.1 Thin Plate Excited by a Turbulent Boundary Layer 

 The goal of this portion of the experiment was to measure the response of a thin 

flat plate excited by a turbulent boundary layer.  In the simplest case, the flow was a 

standard fully developed boundary layer but can be extended to different flow conditions 

as the intent is to study flow conditions which create spatially non-homogenous pressure 

fields.  This setup was used to support the experimental data obtained for Chapters 4 and 

5. 
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A schematic of the experimental setup is shown in Figures 3.1 and 3.2.  A support 

structure was designed consisting of two S4x7.7 steel I-beams which were welded 

perpendicular to a 1.27 cm thick steel plate.  This 1.27 cm thick steel plate was then 

bolted to an optical table such that the I-beams ran perpendicular to the surface of the 

table.  Two interchangeable backpieces were then designed which could be attached to 

the I-beams to measure either surface pressures or structural vibration.  The test structure 

was placed adjacent to a wind tunnel with a 30.5 cm by 30.5 cm exit such that the exit 

flow of the wind tunnel created a jet which was parallel to the surface of the test piece.  

The wind tunnel was capable of reaching speeds up to approximately 60 m/s, and the exit 

flow of the wind tunnel was tripped utilizing a sand trip roughly 43 cm upstream of the 

beginning of the test piece.  

 
Figure 3.1. Front view of flat plate structural setup. 
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Figure 3.2. Top view of flat plate structural setup. 

 

 Using a 3-axis traverse, the boundary layer profile was measured at a flow speed 

of 30 m/s at the midpoint of the test setup, as shown in Figures 3.3 and 3.4.  The 

boundary layer thickness at 30 m/s was found to be 20 mm.  The resulting plots appear to 

be consistent with a fully developed canonical turbulent boundary layer. 

 

Figure 3.3. Measured boundary layer profile at 30 m/s. 
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Figure 3.4. Measured boundary layer profile at 30 m/s normalized by inner scaling 

parameters. 

 

3.1.1 Structural Setup 

 The first backpiece was designed to measure structural vibration.  This backpiece 

consisted of a 34.3 cm by 30.5 cm by 2.54 cm thick piece of steel affixed to the support 

structure through ten countersunk bolts on both the left and right sides.  A hole of size 

19.37 cm in the streamwise direction and 15.24 cm in the spawnise direction was 

removed from the backpiece such that it was centered on the backpiece.  The corners of 

this hole were milled to a 0.32 cm radius, while the corners were further milled 0.25 cm 

deep from the front side of the plate to have a radius of 0.16 inches.   

The structural backpiece was used to examine both fluid-loaded and non-fluid-

loaded vibration.  For the non-fluid-loaded vibration, a 0.51 mm thick steel plate was 

affixed to this backpiece through use of the epoxy Vibra-tite 121 (comparable to Loctite 
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242).  This epoxy cures under pressure, separates in heat, and forms an extremely stiff 

bond when cured.  To affix the thin steel plate to the backpiece, the epoxy was spread 

evenly over the surface of the backpiece, the thin steel piece was placed ontop, and then 

thin plate was heavily weighted down to allow the epoxy to cure.  This resulted in a setup 

that mimics the conditions of a 19.37 cm by 15.24 cm plate with clamped boundary 

conditions along all edges; measurements were performed to verify that the vibration of 

the backpiece was negligible in comparison to that of the thin steel plate.  Figures 3.1 and 

3.2 show front and top views of this setup, respectively.  For this setup, the fluid loading 

factor was approximately β=0.14 at the first natural frequency of 112 Hz.  This fluid 

loading factor was much less than 1 and thus fluid loading effects on this structure should 

be negligible.   

When examining fluid-loaded vibration, a 0.051 mm thick piece of aluminum foil 

was affixed to the structural backpiece instead of the 0.51 mm thick steel plate.  The foil 

was placed in homogeneous tension by attaching weights to the foil at equally spaced 

locations along the perimeter then adhering the foil to the surface of the structural 

backpiece with adhesives.  Under the case of a canonical turbulent boundary layer 

excitation, the fluid loading factor was approximately β=7.76 at the first natural 

frequency of 60 Hz. This fluid loading factor was much greater than one, such that the 

structure is heavily fluid loaded. 

Structural vibration data of the active region of the structural backpiece were 

taken using two simultaneous laser Doppler vibrometers (LDV).  The Polytec OFV-503 

Sensor Head was used to measure the vibration of a fixed point (from here on out known 

as the single point laser) while the Polytec PSV-400 Scanning Head scans a specified 
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series of points (from here on out known as the scanning laser).  The Polytec LDV’s can 

measure vibrations up to a frequency of 80 kHz and can measure vibrations between 0.01 

μm/s and 10 m/s; these ranges are more than sufficient for the structures of interest to this 

experiment.  In order to promote stronger signal strength to the lasers, the 0.51 mm thick 

steel plate was coated with a thin layer of glass microspheres.  These glass microspheres 

improve the laser’s signal strength by promoting scattering of the laser from the surface.  

The microspheres are small and light enough to have negligible effects on the plate’s 

vibration.  The 0.051 mm thick aluminum foil did not require the use of glass 

microspheres to obtain sufficient signal strength. 

The use of the two lasers does not allow for simultaneous vibration information of 

all points of the plate as would be the case with accelerometers, which adds a 

complication to the measurements.  However, the simultaneous measurements of these 

two lasers allow for determination of the cross-spectral density of the vibration at various 

pairs of points across the structure.  Chapter 4 details a method by which these two-point 

measurements and their corresponding cross-spectral densities can be used to decompose 

the vibration into a series of mode shapes as long as one of the scanned points remains 

unchanged.    

 

3.1.2 Wall Pressure Measurement Setup 

The second backpiece utilized was the surface pressure backpiece.  This 

backpiece consisted of a series of pressure taps to measure surface pressure and was 

interchangeable with the structural backpiece.  The pressure taps were fitted with wall-
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mounted Knowles microphones, model FG-23629-C36, with a 2.59 mm sensing diameter 

and a reported maximum frequency of 10 kHz.    The microphones were placed at 

increments of 15.24 mm apart spanning a region greater than the bounds of the active 

vibration area for the structural backpiece.  A schematic of the surface pressure backpiece 

is shown in Figure 3.5.  The flow boundary conditions were identical for both the cases of 

the structural backpiece and the surface pressure backpiece.  The purpose of the surface 

pressure backpiece was to determine the spatial-dependent wall pressure field which is 

exciting the active region of the structural backpiece.   

 

Figure 3.5. Schematic of surface pressure backpiece. 

 

 Figure 3.6 shows the auto-spectral density of the wall pressure for a microphone 

at the leading edge, trailing edge, and center of the active vibration region.  All three of 

these measurements were taken along a streamwise line running along the center of the 
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active vibration region.  One should note very little streamwise variation of the wall 

pressure auto-spectral density, which shows that the flow is relatively spatially 

homogeneous.  Figure 3.6 shows the auto-spectral density of the wall pressure at 

frequencies up to 10 kHz so that the reader can see at what frequencies the pressure 

spectra has reduced magnitudes.  However, the structural analysis will only involve 

frequencies up to approximately 1 kHz.  Over this range of frequencies, the amplitude of 

the unsteady surface pressure spectra was found to be essentially constant. 

 

Figure 3.6. Measured wall pressure at three locations of the active vibration region. 

 

 As detailed in Chapter 2, prediction of the vibration of a structure requires 

knowledge of both the magnitude of the exciting wall pressure and its spatial 

characteristics.  Figures 3.7 and 3.8 show the pressure spectra for various wave numbers 

in the streamwise and spanwise directions, respectively.  The legend in this plot 

corresponds to 2π/kxL for the streamwise plot and 2π/kyW for the spanwise plot (i.e. the 
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ratio of the wavelength of the wall pressure spectra to the length of the plate in the 

corresponding direction).  Thus, for example, the legend entry of 3.9688 corresponds to 

the wall pressure at a spatial scale roughly corresponding to that of mode 4 of the plate.  

One will note little variation wall pressure spectra as a function of wavelength, with the 

exception of legend value of zero, which has a slightly higher magnitude than the other 

spectra. 

 

Figure 3.7. Wall pressure spectra for various wavelengths in the streamwise direction.  

Legend corresponds to 2π/kxL. 
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Figure 3.8. Wall pressure spectra for various wavelengths in the spanwise direction.  

Legend corresponds to 2π/kyW. 

 

3.1.3  Generation of Spatially Nonhomogeneous Wall Pressure Fields 

 In order to generate spatially non-homogeneous wall pressure fields, a device 

called a splitter was attached to the flow side of the structure.  The splitters were designed 

so that they would not make contact with the structure.  Two splitters were used to create 

different spatial non-homogeneities of the wall pressure field.  The “vertical splitter”, 

intended to create a spanwise non-homogeneity in the wall pressure field, was composed 

of a wooden board aligned in the streamwise direction and a ramp on one side of this 

board which causes the flow field to be separated over the active region of the structural 

backpiece on that side of the wooden board.  This created a blocked off region of flow 

spanning approximately 2/3 of the span of the plate.  The wall pressure was 

experimentally determined to be at least one order of magnitude lower in all regions of 
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the blocked off portion than in the unblocked portion.  This created a pressure field with 

wall pressure magnitudes comparable to that of a step function in the spanwise direction, 

creating a strong spanwise non-homogeneity of the pressure field.  Figure 3.9 shows a 

schematic of the vertical splitter, while Figure 3.10 shows a picture of the splitter in place 

in the setup.   

 

Figure 3.9. Schematic of vertical splitter. 
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Figure 3.10. Picture of vertical splitter in place. 

 

The second splitter was the “horizontal splitter”, which is primarily composed of 

a ramp placed to create a region of separated flow over approximately 2/3 of the structure 

on the downstream end.  The purpose of the horizontal splitter was to create a streamwise 

non-homogeneity in the wall pressure field.  A picture of this is shown in Figure 3.11. 

 

Figure 3.11. Picture of the vertical splitter. 
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3.2 Ducted Rotor Experiment 

3.2.1 General setup 

 The ducted rotor experiment follows a similar setup to that previously used by 

Stevens [11].  The duct for the present experiment was machined from eight inch 

diameter PVC to an inner diameter of 206 mm and a wall thickness of 6.7 mm.  The final 

duct was cut into pieces of varying length (usually approximately 20.3 cm) and was 

designed with a connection system so that pieces of the duct could be interchanged, the 

locations of important features of the duct altered, and the length of the duct altered.   

 

Figure 3.12. Schematic of ducted rotor experiment 

 

 The duct was supported in two different fashions.  For acoustical experiments, the 

duct was mounted to a steel unistrut structure supported on a vibration isolation pad.  

This setup was placed within an anechoic chamber with a low frequency limit of 100 Hz.  

The unistrut was covered with split-seam pipe insulation to reduce acoustic scattering.   
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 For structural experiments, the duct was mounted on a unistrut structure which 

was affixed to a heavy optical table with mounting taps at 2.54 cm intervals.  Because the 

environment was not anechoic, foam wedges were placed at specific locations around the 

duct to minimize reflections within the room, particularly from the optical table which 

was located relatively close to the duct.  This setup provided for a more stable foundation 

for the duct when attempting to measure vibration but limited the range of acoustical 

experiments that could be run.  Figure 3.13 shows an image of the duct setup for 

structural experiments. 

 

 

Figure 3.13. Picture of structural setup on the optical table of the duct experiment with 

nickel portion attached. 
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 All further explanation of the duct setup should be assumed to apply to both the 

cases of the acoustic setup and the structural setup unless otherwise noted.  A special 

rounded inlet was machined from particle board and designed to mate with the plastic 

duct sections in order to provide a smoother transition from the external flow to the 

internal duct flow, a picture of which is shown in Figure 3.14.  The inlet flow was 

conditioned using a single thin layer of a “cheesecloth” type fabric stretched over a wire 

frame which surrounded the duct inlet and was particularly effective in reducing large-

scale turbulent structures approaching the duct inlet.   

 

Figure 3.14. Picture of rounded duct inlet and rotor. 

 

In order to support the rotor within the duct, a stainless steel cylinder running 

along the central axis of the duct was cantilevered from two clamped supports several 

diameters upstream of the inlet.  This cylinder contained a compact servo motor to drive 
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the rotor at the desired speed and was supported by a unistrut structure separate from that 

which supported the duct.    

 The rotor was a ten-bladed rotor as previously used by Sevik [48], with a diameter 

of 0.203 m, a constant blade chord of 0.025 m, and a maximum thickness of 2.4 mm.   

The blades are straight blades incorporating twist only, and are thin air foils with rounded 

leading and trailing edges.  The rotor operated with a tip clearance of 5% blade chord. A 

pictures of this rotor within the duct can be seen in Figure 3.14.  Table 3.1 shows a more 

comprehensive list of relevant parameters of the rotor 

 

TABLE 3.1 

BASIC DIMENSIONS OF THE DUCTED ROTOR EXPERIMENT 

Parameter Symbol Value 

Duct Diameter D 0.206 m 

Length L Usually 1.272 m, but 

variable 

Rotor Tip Radius Rtip 0.1016 m 

Rotor Hub Radius Rtip/4 0.0254 m 

Rotor Location L1 0.293 m 

Number of Blades B 10 

Chord C 0.254 m 

Tip Gap - 0.05C 

Rotor Rotation Rate RPM 2500  5000 

Rotor Tip Speed Vtip 26.6  53.2 m/s 

Mean Axial Fluid Velocity 

in Duct 
 ̅ 4.0  22.4 m/s 

Tip Relative Mach Number Mtip <0.16 

Speed of Sound c0 343 m/s 
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3.2.2  Measurement Sections 

The overall duct experiment was designed with interchangeability in mind.  The 

location of the rotor was variable, and because of the interchangeable PVC pieces that 

compose the duct, the measurement sections (i.e. the microphone array and the nickel 

shell) could be moved to almost any location.  It was decided to place the rotor 0.293 m 

downstream of the inlet of the duct.   

Experiments were performed by replacing one of the interchangeable PVC duct 

pieces with a “measurement section”, which was either a section containing a 

microphone array for wall pressure measurements or a thin nickel duct for structural 

vibration measurements.  These duct sections are analogous to the wall pressure and 

structural backpieces outlined in Section 3.1.  Axially, the center of the interchangeable 

section was located 0.292 m downstream of the rotor.  This corresponds to the axial 

center of the nickel shell and the location of the circumferential microphone array, 

pending the particular experiment being run.   

The wall pressure measurement section was 8 inches in length and consisted of a 

series of pressure taps along the wall to allow for surface mounted microphones.  The 

section contained 9 taps at 1.9 cm intervals along the axis and 32 taps equally spaced 

along the circumference (one of these taps is shared by both directions).  A picture of this 

is shown in Figure 3.15.  The circumferential array of microphone taps were fitted with 

Knowles microphones, model FG-23629-C36, with a 2.59 mm sensing diameter and a 

reported maximum frequency of 10 kHz (though testing has indicated that with 

calibration they are effective at frequencies of at least 40 kHz).  Data was taken at 51 
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rotor speeds from 2500 rpm to 5000 rpm at 50 rpm increments with 16 ensembles per 

speed.  For each ensemble, approximately 1.6 seconds of data was simultaneously 

acquired from each microphone at a sampling rate of 40 kHz.   

 

Figure 3.15. Picture of the ducted microphone array with several microphones removed. 

 

For structural experiments, the test section was replaced with a nickel duct.  The 

nickel duct piece was a 20.3 cm long nickel shell with a thickness of roughly 68 μm.  The 

nickel shell was thin enough that when excited by an air flow within the duct that the 

nickel shell vibrated sufficiently for the scanning and reference laser to be able to 

measure the vibration.  The duct was circumferentially symmetric, containing no seam.  

The first natural frequency occurs at roughly 267 Hz.  This corresponds to a fluid loading 

factor of 1.05, which indicates that the nickel duct was lightly fluid loaded.  A spring-

tension mechanism was implemented to subject the shell to a specific, uniform tension in 

the axial direction.  When utilizing the nickel duct, a conical nozzle 20.3 cm in length 
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with ends of 17.8 cm and 20.3 cm inner diameter was attached to the exit of the duct.  

This created a slight backpressure within the duct, creating circumferential tension in the 

nickel shell.  Figure 3.16 shows a picture of the nickel shell and its support structure. 

 

 

Figure 3.16. Nickel shell and its support structure. 

 

Structural vibration data was taken using the scanning and reference laser, similar 

to the case outlined in Section 3.1.  The nickel shell was coated with a thin layer of class 

microspheres in order to promote LDV signal strength, similar to the case of the steel 

plate noted in Section 3.1.  Structural vibration data was taken in an axial and 

circumferential sweep with a fixed reference location.  Utilizing a mirror, a 

circumferential sweep of approximately 270
o
 was obtained. 
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CHAPTER 4 

PREDICTION AND EXPERIMENTAL DETERMINATION OF THE MODAL 

VIBRATION SPECTRA OF A THIN ELASTIC PLATE 

 

One must first validate that the structural vibration can be measured under the 

most basic conditions in order to measure structural vibration under the effects of non-

homogeneous forcing and fluid-loading.  Two models are required to predict the 

structural vibration of a thin plate: a model of the wall pressure spectra and a model of 

the structural vibration transfer function.  In this chapter, experimental wall pressure data, 

the Corcos wall pressure model, and the structural transfer function as outlined by Blake 

[1] and Leissa [17] will be combined in order to predict the structural vibration of each 

mode.  Structural vibration data were taken using the experimental setup detailed in 

Section 3.1.  The two-point information of vibration was decomposed using a procedure 

termed magnitude-phase identification (MPI), which will be derived in this chapter.  MPI 

was validated by comparing the auto-spectral density of vibration for a single mode 

determined through MPI to the values predicted by vibration theory.  
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4.1 Theoretical Transfer Function for a Structural Vibration 

 This analysis assumes statistically stationary structural vibration which is induced 

solely by a statistically stationary, spatially homogeneous, low Mach number flow over 

the surface of the structure.  The analysis will be restricted to thin structures with small 

magnitudes of motion, where the motion of the structure does not alter the flow field.  

Blake [1] details a method by which the vibration of such a structure can be predicted 

through modal analysis.  While the proof will not be detailed here, it assumes that the 

displacement of the structure can be expressed in the form 

 

  ∑ ∑      
( )(  )  

( )(  )   ( ) 
   

 
    ∑ ∑       ( ⃗)   ( ) 

   
 
    ,  (4.1) 

 

where ξ  is the structural displacement and amn is the coefficient which represents the 

amplitude of mode <m,n>.  ψmn(y) is the two-dimensional eigenfunction (also known as 

the mode shape) for mode <m,n>, and gmn(t) is a function which determines the time-

dependence of the mode’s displacement.  For analysis related to rectangular structures, m 

will represent the streamwise mode number and n will represent the spanwise mode 

number, though such a distinction is not a requirement of the analysis.  Furthermore, 

eigenfunctions in this documents will use the same normalization used by Blake[1], 

which is defined as 

∬    ( )  
      

            , (4.2) 

where Aplate is the surface area of one side of the structure and δmn is the standard Dirac 

delta function. 
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 The analysis assumes that the structure is excited by a wall pressure field p(y,t), 

defined for all points in space over the area of the structure and for all points in time.  For 

each mode <m,n>, the projected pressure is the result of projecting the wall pressure field 

at a fixed moment in time onto the corresponding mode shape.  Assuming the mode 

shape normalization defined in Equation (4.2), the projected pressure is 

   ( )  
 

      
∬  (   )   ( )  

      
  . (4.3) 

Then, the transfer function for the vibration of the structure can be written as 

      
 

  
 [(   

    )  (       ) ]
       . (4.4) 

Here, Φv,mn is the auto-spectral density of the vibration for mode <m,n>, Φp,mn is the auto-

spectral density of the projected pressure defined in Equation (4.3), ω is the frequency of 

vibration, ωmn is the natural frequency of mode <m,n>, ms is the mass per unit area of the 

structure, and ηmn is the damping ratio for mode <m,n>. 

 

4.2 Derivation of Magnitude-Phase Identification 

 Experimental validation using Equation (4.4) requires experimental determination 

of the frequency-dependent vibration of each mode <m,n>.  A modal decomposition is 

required to convert vibration data from each point into modal data, but such modal 

decomposition requires the relative phase of vibration between each point measured to be 

known.  In the experimental setup detailed in Section 3, vibration information is only 

acquired for two points at a time rather than simultaneously across the entire structure.  

Thus, a method must be developed to determine the phase information of all points using 
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only two-point measurements.  This method, which will be derived in this section, will be 

called Magnitude-Phase Identification (MPI). 

The cross-spectral density of a function is defined as  

     
( )        
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         , (4.5) 

where Et is an operator that indicates the expected value over time; for large values of 

time this is simply the mean.  τ represents a time difference between the two signals and 

is primarily used as a dummy variable of integration.  While in practice v1 and v2 are 

often measurements of the same variable (such as velocity) at different locations, 

Equation (4.5) is valid for any signals v1 and v2.   

Next, assume that v1 and v2 can be expressed as a Fourier series such that 
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and 
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where T is the time over which v1 and v2 are defined (or measured).  v1 will be known as 

the reference signal.  V1(2πm/T) and V2(2πn/T) are the Fourier series coefficients and are 

complex values.  These coefficients are generally written as being dependent on m and n, 

but they are written here as being dependent on 2πm/T and 2πn/T without loss of 

generality in order to simplify later steps in the derivation.  For a stationary system the 

reference phase of v1(t) and v2(t) is arbitrary; only the difference in phase between v1 and 

v2 can be uniquely defined.  Choose v1 to be defined such that it has a reference phase of 
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zero, and thus the phase of v2 is defined relative to the phase of v1.  Substitution of 

Equation (4.6a) and (4.6b) into Equation (4.5) yields 
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The orthogonality of the sine and cosine ensures that the value within the integral will 

only be non-zero for values of m=n, resulting in 
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As τ is not a function of n, the integral of the summation can be changed into the 

summation of the integrals, yielding 
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Due to the orthogonality of the sine and cosine functions, the integration of Equation 

(4.9) is only non-zero for 2πn/T = ω.  Thus, Equation (4.9) simplifies to 

     
( )    ( )  

 ( )  |  ( )||  ( )|     ( )  ,  (4.10) 
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where ϕv is the phase of v2 relative to v1 at the given frequency.  The derivation of (4.10) 

never specified that v1 and v2 were unique signals, so if one applies this result for v1=v2, 

then Equation (4.10) becomes 

     
( )    ( )  

 ( )  |  ( )||  ( )|     |  ( )|  (4.11) 

Dividing (4.10) by (4.11) yields 

|  ( )|     ( )  
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√     
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  . (4.12) 

Equation (4.12) demonstrates how one can obtain magnitude and phase 

information everywhere along a structure using only two-point measurements.  Equation 

(4.12) is the final form of the MPI.  The reference signal v1 need not be measured at any 

specific location in general.  However, the primary requirement for use of MPI is that v1 

and v2 must be coherent.  The phase difference ϕv is undefined for components of v1 and 

v2 which are incoherent, and thus, any incoherent portions of the two signals will be 

removed through use of MPI.  In the experimental setup shown in Section 2, the 

coherence of the structure was extremely high, allowing for use of the MPI. 

The coherence requirement of the MPI has several secondary effects.  First, the 

coherence between a point along a node line and any other point of a structure will be 

undefined because the node line point is not vibrating.  Thus, while in general the 

reference location can be anywhere, placing the reference signal along a node line of a 

mode will cause all information related to that mode to be removed when the MPI is 

applied.  This holds true even if v2 is not located on a node line.  Second, random noise in 

the measurement data tends to be removed through use of MPI because truly random 
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signals are inherently incoherent; this causes the MPI to act as a type of noise filter.  

Finally, v1 and v2 need not both be vibration signals, they need only be coherent.  For 

example, MPI would function even if v1 were a vibration signal and v2 were a pressure 

signal as long as the two signals have a large coherence. 

 

4.3 Modal Decomposition 

 The MPI provides information on the magnitude and relative phase of the 

vibration of all locations scanned on the structure.  To compare to predictions in Equation 

(4.4), the vibration must be calculated for each mode.  If the modes of vibration were 

sines and cosines, this would usually be called a Fourier decomposition, but because the 

modes are not restricted to sines and cosines, the more generic term “modal 

decomposition” is used.  Two methods of performing the modal decomposition will be 

presented: minimization of error and projection.  While the methods are similar, each 

contains different benefits and flaws, which is why both methods will be examined. 

 

4.3.1 Modal Decomposition Through Minimization of Error 

 The minimization of error method of modal decomposition utilizes linear algebra 

for non-square matrices.  The analysis begins by stating that the vibration of a single 

frequency can be expressed as 

                 . (4.13)  
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Here, p equals the number of points scanned on the structure, and b equals the number of 

modes being utilized in the decomposition.  Ψpxb is a matrix composed of the mode 

shapes of the structure, where each column is equal to the values of a single mode shape 

at each point scanned on the structure.  Mbx1 represents the magnitude of the vibration for 

each mode at that frequency; each index of this array equals the square root of Φv,mn for b 

corresponding to mode <m,n>.  Vpx1 is the real component of the MPI at this frequency 

and represents the structure’s vibration at this frequency.  Ψpxb is not a square matrix; 

rather, p>b, meaning that there are more scanned points than modes present in the 

decomposition.  Thus, Equation (4.13) in general cannot be solved exactly.  Rather, the 

system can only be solved for minimum error. 

 When minimizing the error, a weighting function can be used to cause the error of 

certain points to contribute more or less than the error of other points.  This causes 

Equation (4.13) to take the form 

                       , (4.14)  

where Wpxp is the weighting matrix.  For this analysis, Wpxp was set such that Wpxp = Ipxp 

|Vpx1|, where Ipxp is the identity matrix and |Vpx1| has elements equal to the absolute value 

of the elements of Vpx1.  This causes the minimization of error to be more heavily 

weighted towards points with relatively large magnitudes of vibration and weighted 

against points of small vibration, such as those along nodal lines.  This is advantageous as 

points of small vibration tend to be more susceptible to noise.  Such a weighting scheme 

was found to reduce noise in the vibration spectra which resulted from the modal 

decomposition.  While other forms of Wpxp could produce similar results, this scheme 
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provides a simple method for creating a weighting matrix with large values at the points 

of greatest vibration without prior knowledge of the vibration of the structure. 

 Equation (4.14) can be solved by using the method of ordinary least squares, 

which results in 

(        )
 
        √      (        )

 
         . (4.15) 

Equation (4.15) contains square matrices on either side of the equation and thus is 

solvable through standard linear algebra techniques.  The solution obtained from this was 

termed the minimization of error method for modal decomposition. 

 

4.3.2 Modal Decomposition Through Modal Projection 

 The second method of modal decomposition used in this thesis was the projection 

method.  Based on Equation (4.1), start by assuming that the vibration of all points at a 

single frequency can be written as 

  ∑        ,    (4.16) 

where V is a vector with elements equal to the vibration at each point, b is an index 

representing each mode utilized in the decomposition, ψb is the mode shape for mode b, 

and Mb is the magnitude of the vibration for mode b.  Specifically, for a fixed frequency, 

V is the vector of the real components of the MPI at each point, and Mb is equal to the 

square root of Φv,mn for b corresponding to mode <m,n>.  Using the orthogonality 

condition for the eigenfunctions, Equation (4.16) can be recast as 
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∬      
      

 ∬         
      

 ,   (4.17) 

Where the integration is carried over the surface area of the plate Aplate. 

 Using the normalization condition presented in Equation (4.2), Equation (4.17) 

becomes 

√ ( )     
 

      
∬     ( )  

      
  . (4.18) 

Assuming that the scanned points are equally spaced, then the integration can be more 

easily discretized by recognizing that dAdiscretized = Aplate/p, where p is the number of 

points scanned, because each discrete area block has an equal area.  This leads to the final 

form of the discretized projection,  

√ ( )     
 

 
         ( )  , (4.19) 

where Ψmnxp is a matrix of the mode shapes, with columns corresponding to the values of 

a single mode shape at each point.  Equation (4.19) was termed the projection method of 

modal decomposition. 

 

4.4 Experimental Determination of the Wall Pressure Spectra 

 Calculation of Equation (4.4) requires knowledge of Φp,mn, the projection of the 

wall pressure spectra onto the eigenfunction of mode <m,n>.  Equation (4.3) can be 

directly used to calculate Φp,mn if simultaneous wall pressure information is known at all 

locations of the plate.   As outlined in Chapter 3, experimental information was only 
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acquired in the streamwise or spawnise direction, but not both simultaneously.  Thus, the 

wall pressure projection must be calculated in the wave number domain.  Blake [1] 

details that the projected wall pressure spectra can be calculated by 

      
 

      
 ∬   (   )|   ( )|   

  

  
 , (4.20) 

where Smn(k) is the shape function for mode <m,n>, defined as 

   ( )  ∬          ( )  
      

  . (4.21) 

The shape function represents the degree to which a wave number projects onto the 

eigenfunction for mode <m,n>. 

 One of the simplest models for the spatial characteristics of the wall pressure of a 

turbulent boundary layer is the Corcos model.  In the wavenumber domain, the Corcos 

model of wall pressure takes the form [36] 

  (       )     ( ) (    ) (    )  . (4.22) 

Here, Φpp(ω) is the auto-spectral density of the wall pressure.  Because the basic Corcos 

model assumes a spatially homogeneous wall pressure field, this is not a function of 

position.  This assumption was shown to be valid in Figure 3.6 for the experimental setup 

outlined in Chapter 3, where the auto-spectral density of the wall pressure does not 

change appreciably with streamwise position.  g(kx,ω) and h(ky,ω) are functions 

representing the streamwise and spanwise spatial characteristics of the wall pressure, 

respectively. 
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 For wall pressures obtained along a line of fixed spanwise location (i.e. a 

streamwise array), the Corcos model can be expressed as 

             (    )     ( ) (    ) ,  (4.23) 

and a spanwise array can be expressed as 

           (    )     ( ) (    ) .  (4.24) 

Direct substitution of these equations into Equation (4.22) yields 

  (       )  
             (    )           (    )

   ( )
 . (4.25) 

All values on the right side of Equation (4.25) are directly determinable from the 

experimental data obtained in Chapter 3.  Φp,streamwise(kx,ω) and Φp,spanwise(kx,ω)  

correspond to Figures 3.7 and 3.8, respectively.   

 

4.5 Determinations of the Mode Shapes and Natural Frequencies 

 Calculation of Equation (4.4) requires decomposing the structural vibration into 

the vibration of each mode and projecting the pressure field onto the mode shapes.  The 

methods of performing these calculations were detailed in Sections 4.3 and 4.4.  Both 

require knowledge of the mode shapes for each mode of interest.  Also, Equation (4.4) 

requires the natural frequency of each mode of interest as an input.  The section will 

detail how to experimentally determine the mode shapes and natural frequencies through 

use of MPI. 
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4.5.1 Theoretical Mode Shapes for a Non-Fluid-Loaded Plate 

While experimental mode shapes will be used in the calculations, it was 

advantageous to compare the experimentally-derived mode shapes to theoretical mode 

shapes to determine if the experimentally-derived mode shapes appear reasonable.  Leissa 

[17] derives expressions for the theoretical mode shapes and natural frequencies of a 

clamped rectangular plate.  A detailed summary of the calculation of these quantities 

requires more time than is worth presenting in this paper; however, the results will be 

summarized here.  The theoretical natural frequencies of various modes are given in 

Table 4.1. 

 

TABLE 4.1 

PREDICTED NATURAL FREQUENCIES OF EXPERIMENTAL PLATE 

Streamwise mode number (m) 

  1 2 3 4 5 

Spanwise 

mode 

number 

(n) 

1 151.7 273.2 462.3 719.3 1042.3 

2 362.8 470 649.5 900.2 1219.6 

3 676 779.9 952 1195.2 1508.5 

4 1094.2 1197.3 1365.7 1603.4 1910.7 

5 1616.9 1720 1886.8 2121.1 2423.9 
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 Because the mode shapes for a rectangular clamped plate are separable, it is often 

simpler to plot the one-dimensional eigenfunctions for a single direction, corresponding 

to ψm
(1)

 or ψn
(2)

 in Equation (2.5); Figure 4.1 shows such a plot.  The eigenfunctions here 

have not been normalized as per Equation (2.6) because Equation (2.6) is only defined for 

the full two-dimensional eigenfunction.  Note that the mode shapes look increasingly 

similar to pure sine waves (the mode shape for a simply supported plate or a foil) for 

increasing mode, though due to the clamped condition the mode shapes can never truly 

be pure sine waves. 

 

Figure 4.1. One-dimensional eigenfunction for a clamped plate at various modes. 
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4.5.2 Experimental Determination of the Mode Shapes 

 Experimentally determining the mode shapes through MPI requires first 

identifying possible natural frequencies of the structure, which usually correspond to 

peaks in the auto-spectral density of the vibration.  Figure 4.2 shows the auto-spectral 

density of the vibration of the reference location for the experimental setup detailed in 

Chapter 3.  The measured natural frequencies for various modes are marked in Figure 

4.2.  The natural frequency for mode <1,1> was measured to be 112 Hz and is the lowest 

natural frequency for the structure.  It should be noted that the observation of a resonant 

peak on the reference laser’s auto-spectral density validates that the reference laser is not 

located on a nodal line for the mode associated with that natural frequency. 

 

 

Figure 4.2. Auto-spectral density of the vibration of the reference location with natural 

frequencies marked for various modes. 
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The vibration of the plate detailed in Chapter 3 subjected to roughly 17 m/s free 

stream velocity flow was measured with a series of simultaneous two-point 

measurements from the single-point LDV and scanning LDV.  1015 equally-spaced 

points across the area of the plate (forming a grid of 35 locations in the streamwise 

direction and 29 in the spanwise direction) were measured using the scanning LDV.  

Simultaneously, a point in the bottom-right quadrant of the plate was scanned using the 

single point LDV.  The point was verified to not lie on a node of the first 5 modes of 

vibration as doing so would result in no correlation between the single-point LDV and the 

scanning LDV at such a mode; otherwise, the point was simply chosen based on strong 

signal strength.  The point did not directly coincide with any point scanned by the 

scanning LDV.  Each pair of points was scanned simultaneously for 128 seconds at a 

sampling rate of 8192 Hz.  These factors resulted in a strong enough correlation between 

the measurements single-point and scanning LDV to allow for use of MPI.  Furthermore, 

a sufficient number of points were scanned with the scanning LDV to identify the spatial 

profiles of the first several modes. 

 The MPI was used with each two-point measurement to generate a magnitude and 

phase of vibration for the scanning laser location relative to the reference laser location.  

Examining the real component of the MPI for each location results in the shape of the 

vibration of the plate for that frequency, which was termed “surface shape” for that 

frequency.  The surface shape is the superposition of the contributions of each mode 

active at that frequency.  In Figure 4.2, one will note that there is no resonant peak to 

identify mode <3,1>.  However, mode <3,1> is still identifiable by examining the surface 
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shape of that frequency.  This demonstrates one potential advantage of MPI over methods 

which rely solely on a single-point auto-spectral density, as such method would not be 

able to identify mode <3,1> in this situation. 

 If one assumes that a resonating mode has an amplitude that is orders of 

magnitude larger than all other modes as its natural frequency, then the superposition of 

all modes will be almost equal to solely the resonating mode at that frequency.  Thus, the 

mode shape of a given mode can be approximated as being equal to the surface shape at 

that mode’s natural frequency.  This allows for experimental determination of mode 

shapes in structures whose mode shapes are not theoretically known.  In this document, 

the measured surface shape for a frequency corresponding to the natural frequency of a 

mode was termed the “measured mode shape”.  Surface shapes for frequencies other than 

natural frequencies in general will not be dominated by single mode, so the superposition 

will in general contain substantial contributions from multiple modes. 

 The measured mode shapes for several modes are shown in Figures 4.3 - 4.6.  

Recall that these measured mode shapes were generated with turbulent boundary layer 

excitation.  A ping test cannot be used with MPI because MPI requires statistically 

stationary vibration, and a ping test results in transient vibration.  In each figure, the 

theoretical mode shapes predicted by Leissa[17] are also shown for purposes of 

comparison.  In these figures, the axes have been linearly normalized to a maximum 

value of 1.  One notes that the measured mode shapes through use of the MPI closely 

match the modes shapes predicted by Leissa.  It is important to note that the measured 

mode shapes are those directly predicted by MPI and are not generated based on any 

assumptions as to the theoretical mode shape.  Thus, the same measured mode shapes 
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could be generated without knowledge of the theoretical mode shapes.  For higher modes 

such as <5,1>, one notices a small amount of noise in the measured mode shape.  

However, the noise in the measured mode shape is relatively small given that the 

vibration of higher order modes are multiple orders of magnitude lower than the 

dominant mode <1,1>, which can be seen in Figure 4.2.  The relatively low amount of 

noise observed is at least partially attributable to the MPI’s tendency to remove random 

noise due to truly random noise being incoherent. 

 

 

Figure 4.3. Measured mode shape (left) and theoretical mode shape (right) for mode 

<1,1>.  Axes are normalized for a maximum value of 1. 

 



www.manaraa.com

     
 

73 
 

 

Figure 4.4. Measured mode shape (left) and theoretical mode shape (right) for mode 

<2,1>.  Axes are normalized for a maximum value of 1. 

 

 

Figure 4.5. Measured mode shape (left) and theoretical mode shape (right) for mode 

<2,3>.  Axes are normalized for a maximum value of 1. 
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Figure 4.6. Measured mode shape (left) and theoretical mode shape (right) for mode 

<5,1>.  Axes are normalized for a maximum value of 1. 

 

 The coherence for the first four modes is shown in Figures 4.7-4.10.  The 

reference location is marked with an asterisk.  As expected, the coherence is not a 

constant value of unity along the node lines.  However, the coherence off the node lines 

appears to be relatively consistent both near and far from the reference location, 

indicating little loss in coherence as a function of spatial separation.  The primary 

possible exception to this is mode <1,2>, where the coherence appears either low or 

subject to noise.  It is not certain why this occurs, but examining Figure 4.2, one will note 

that the amplitude of vibration at the reference location at the natural frequency for mode 

<1,2> is substantially lower than the amplitude for most other modes.  Thus, it is possible 

that the noise in the coherence at the natural frequency of mode <1,2> is a result of 

experimental error associated with a weaker signal-to-noise ratio due to the low 
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amplitude of vibration of this mode.  While such noise would affect coherence, the 

measured mode shape would be far less affected by such noise because MPI would tend 

to filter out the effects of such noise. 

 

Figure 4.7. Coherence at the natural frequency for mode <1,1> for the non-fluid-loaded 

plate excited by a spatially homogeneous turbulent boundary layer. 

 

Figure 4.8. Coherence at the natural frequency for mode <2,1> for the non-fluid-loaded 

plate excited by a spatially homogeneous turbulent boundary layer. 
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Figure 4.9. Coherence at the natural frequency for mode <1,2> for the non-fluid-loaded 

plate excited by a spatially homogeneous turbulent boundary layer. 

 

Figure 4.10. Coherence at the natural frequency for mode <1,1> for the non-fluid-loaded 

plate excited by a spatially homogeneous turbulent boundary layer. 
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4.6 Auto-spectral Density of the Vibration of Each Mode 

 Experimentally-determined vibration spectra for each mode were acquired by 

performing each of the modal decomposition methods outlined in Section 4.3.  For either 

decomposition method, the mode shapes utilized were the measured mode shapes 

(acquired as outlined in Section 4.5) with natural frequencies below 1000 Hz.  The 

frequency-dependent auto-spectral densities of vibration for several modes derived 

through both of these methods are shown in Figures 4.11-4.21.  In these figures, the 

“experimental” vibration corresponds to the left side of Equation (4.4) and the 

“theoretical” vibration corresponds to the right side of Equation (4.4).  For the theoretical 

portions of the plot, ωmn was set equal to the natural frequencies measured in the 

experiments.  Φp,mn was obtained by projecting the measured pressure spectra onto the 

mode shapes through Equations (4.20), (4.21), and (4.25), as outlined in Section 4.4.  One 

should note that while these are plotted up to 1600 Hz that only mode shapes with natural 

frequencies below 1000 Hz were utilized in the modal composition.  This was done to 

allow for better contrast between the two decomposition methods, which will be done 

later in this section. 
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Figure 4.11. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <1,1>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

Figure 4.12. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <2,1>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 
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Figure 4.13. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <1,2>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

Figure 4.14. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <2,2>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 
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Figure 4.15. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <3,1>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

Figure 4.16. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <1,3>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 
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Figure 4.17. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <4,1>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

Figure 4.18. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <2,3>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 
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Figure 4.19. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <4,2>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

Figure 4.20. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <3,3>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 
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Figure 4.21. Experimentally measured and theoretical auto-spectral density of vibration 

for mode <5,1>.  Measured spectra derived from both minimization of error and 

projected modal decomposition methods. 

 

A good but imperfect agreement exists between the measured and theoretical 

vibrations.  Because the MPI does not obtain simultaneous measurements for all points 

and because the excitation of the plate is stochastic in nature, convergence can be slow, 

which may lead to errors in the results.  One should note the range of orders of magnitude 

present in the figures.  Mode <1,1> is the largest mode of vibration for the plate.  The 

difference in the auto-spectral density between mode <1,1>’s resonant peak and many of 

the measured/predicted values of the other modes is greater than six orders of magnitude, 

which can cause small errors in the decomposition to translate into large differences in 

the resulting spectra.  By contrast to the orders of magnitude present, the errors in the 

figures are relatively small. 
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 Figures 4.11-4.21 contrast the relative merits of the two modal decomposition 

methods.  The projection method of modal decomposition is based on the assumption that 

all modes are orthogonal to one another.  In theory this should be true as this is a 

requirement for a mode shape to be an eigenfunction.  A mathematical expression of 

perfect orthogonality of the mode shapes can be expressed as ΨΨ
T
=AplateI, which is 

imposed by the normalization condition of Equation (4.2).  In practice, the measured 

mode shapes will have a non-zero amount of error in comparison to the true mode shapes 

of the structure.  This will result in at least a small degree of non-orthogonality of the 

measured mode shapes, which appears as non-zero off-diagonal elements of ΨΨ
T
.  

Greater errors in the mode shapes will result in less orthogonal mode shapes which have 

greater values of the off-diagonal elements of ΨΨ
T
.  The off-diagonal elements in ΨΨ

T 

will result in a modal decomposition where small portions of the true vibration of a mode 

will appear in the measured spectra of another mode.  At a frequency coinciding with the 

resonant peak of one mode, a small amount of non-orthogonality can result in a 

noticeable peak in the other modes’ spectra due to the relatively high magnitude of the 

resonant peak; this peak is not truly occurring in the structure, it is simply an error in the 

decomposition. 
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CHAPTER 5 

VIBRATION OF FLUID-LOADED STRUCTURES DUE TO NON-HOMOGENEOUS 

FORCING 

 

5.1 Chapter Outline 

 Section 2.1 outlined the fundamental equations of vibration for fluid-loaded 

structures.  Fluid-loaded structures are those structures which have relatively low density 

per unit area compared to the surrounding fluid medium.  Specifically, structures are 

considered to be fluid-loaded for values of β >> 1, as defined in Equation (2.15).  The 

vibration of a fluid-loaded structure is altered by the surrounding fluid medium beyond 

the wall pressure generated by the flow field.  In particular, fluid loading of a structure 

has an effect equivalent to increasing the mass and damping of the structure.  As 

demonstrated by Equation (2.24), fluid-loaded structures can in general be solved in the 

same fashion as non-fluid loaded structures by altering the mass, damping, and natural 

frequency of the second-order differential equation of vibration for each mode. 

 The goal of this chapter is to be an exploratory study to show that the damping 

created by the fluid loading of the structure can alter the mode shapes of structures when 

subjected to spatially non-homogeneous forcing fields.  Non-fluid-loaded structures have 

mode shapes which are independent of the forcing field applied to the structure.  By 
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demonstrating that the forcing field can affect the mode shapes of a structure, it is shown 

that fluid-loaded-structural vibration may not always be solved as a special case of non-

fluid-loaded structural but using the same general solution procedure.  This also questions 

the validity of using standard modal analysis in the solution of the structural vibration.  

While fluid-loaded structures may have similar mode shapes to non-fluid-loaded 

structures, the ability of mode shapes to be dependent on the forcing field is not 

consistent with premises involved in solving structural vibration though standard modal 

analysis.   

As will be demonstrated in this chapter, the resulting mode shapes of a 

rectangular structure due to non-homogeneous forcing tend to be non-symmetric.  This 

has substantial implications for the acoustic radiation of the structure.  The symmetry of 

the mode shapes of the vibration of a rectangular structure creates significant acoustic 

cancellations in the far-field of the structure.  With asymmetrical structural vibration, 

such acoustic cancellations do not occur in the far-field, resulting in a more efficient 

acoustic radiator. 

 The chapter is divided into several sections which sequentially work towards the 

case of analyzing the response of a fluid-loaded structure subjected to spatially non-

homogeneous forcing.  Chapter 4 examined the vibration of a non-fluid-loaded structure 

due to spatially homogeneous forcing, which could be considered the canonical case.  

Similar experimental and analysis techniques will be used for the cases presented in this 

chapter.  Chapter 4 both serves as the first case involved in the analysis which will occur 

in Chapter 5 as well as validation of the experimental and analytical techniques which 

will be used in this chapter.  Section 5.2 examines the vibration of a non-fluid-loaded 
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structure due to non-homogeneous forcing.  The purpose of this section is to validate the 

forcing field does not result in a qualitative difference in the vibrational response of a 

non-fluid-loaded structures other than changing the projected pressure. 

Section 5.3 examines the vibration of a fluid-loaded structure due to spatially 

homogeneous forcing.  The section will demonstrate that the structure appears to vibrate 

in a similar fashion to the previously presented cases, though differences in the coherence 

field will be presented.  Section 5.4 examines the vibration of a fluid-loaded structure due 

to spatially non-homogeneous forcing, the primary case which this chapter leads towards.  

The purpose of this section is to demonstrate that only when both of these conditions are 

met that the structure will have an appreciable change in its mode shapes.  Section 5.5 

utilizes a discretized model of a string to demonstrate how high damping can result in 

comparable vibration fields to those observed in the previous experiments.  While the 

model is not designed to be a prediction, it is designed to demonstrate the underlying 

physics of the problem.  A tabular layout of these cases can be seen in Table 5.1. 

 TABLE 5.1 

FOUR STRUCTURAL VIBRATION CASES EXAMINED 

 Spatially Homogeneous 

Forcing 

Spatially Non-homogeneous 

Forcing 

Non fluid 

loaded 

- Canonical structural vibration 

- Chapter 4 

- Qualitatively identical to canonical 

case 

- Section 5.2 

Fluid loaded - Still composed of relatively 

symmetrical mode shapes 

- Section 5.3 

- Mode shapes appear non-symmetric 

even on a symmetric structure 

- Section 5.4 
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 Mode shapes in this chapter will be plotted as their surface shapes.  Wavenumber-

dependent plots of the first several modes shapes can be found in Appendix A. 

 

5.2 Spatially Non-homogeneous Forcing of a Non Fluid Loaded Structure 

 This section will examine the effects of exciting a non-fluid-loaded structure with 

a spatially non-homogeneous forcing field.  The vertical splitter outlined in Section 3.1, 

and shown in Figures 3.9 and 3.10, was used to create the spatial non-homogeneity in the 

wall pressure field.  The resulting amplitude of the wall pressure appears similar to that as 

a step function in the spanwise direction, creating an extremely spatially non-

homogeneous wall pressure field.  The structure was excited with a free stream velocity 

of approximately 17 m/s, with this flow only exciting approximately the bottom third of 

the plate.  This is the same excitation speed used for setup in Chapter 4, involving the 

non-fluid-loaded spatially homogeneous plate vibration. 

 The experimental mode shapes, determined in the same manner as demonstrated 

in Chapter 4, are shown in Figures 5.1-5.3 when excited with the vertical splitter.  The 

mode shapes are essentially identical to those that were experimentally determined for the 

non-fluid-loaded plate excited by a spatially homogeneous wall pressure field.  This was 

an anticipated occurrence based on the theoretical equations of vibration and serves to 

validate this assumption. 
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Figure 5.1. Experimentally-determined mode shape for the non-fluid-loaded plate using 

the vertical splitter for mode <1,1>. 

 

Figure 5.2. Experimentally-determined mode shape for the non-fluid-loaded plate using 

the vertical splitter for mode <1,2>. 
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Figure 5.3. Experimentally-determined mode shape for the non-fluid-loaded plate using 

the vertical splitter for mode <5,1>. 

 

 The coherence for the natural frequencies corresponding to the first four modes 

are shown in Figures 5.4-5.7.  Similar to the case of the non-fluid-loaded plate with 

spatially homogeneous forcing, the coherence shows little or no decay as a function of 

spatial position.   
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Figure 5.4. Coherence at the natural frequency for mode <1,1> for the non-fluid-loaded 

plate excited with the vertical splitter. 

 

Figure 5.5. Coherence at the natural frequency for mode <2,1> for the non-fluid-loaded 

plate excited with the vertical splitter. 
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Figure 5.6. Coherence at the natural frequency for mode <1,2> for the non-fluid-loaded 

plate excited with the vertical splitter. 

 

Figure 5.7. Coherence at the natural frequency for mode <2,2> for the non-fluid-loaded 

plate excited with the vertical splitter. 
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 The experimental and theoretical auto-spectral density of vibration for several 

modes, determined in the same manner as demonstrated in Chapter 4, are shown in 

Figures 5.8-5.11 when excited with the vertical splitter.  The resulting auto-spectral 

densities of vibration are roughly identical to those of the case excited in a spatially-

homogeneous fashion but with a lower magnitude.  This was an anticipated occurrence 

based on the theoretical equations of vibration.  The experimental results also match the 

theoretical predictions relatively well, with the exception of mode <1,1>.  It is suspected 

that this is caused by errors in measuring the wall pressure field for mode 1 in the 

spanwise direction due to the limited area over which the pressure field can be measured. 

 

Figure 5.8. Theoretical and experimental auto-spectral density of vibration for the non-

fluid-loaded plate, excited by the vertical splitter, for mode <1,1>. 
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Figure 5.9. Theoretical and experimental auto-spectral density of vibration for the non-

fluid-loaded plate, excited by the vertical splitter, for mode <2,2>. 

 

 

Figure 5.10. Theoretical and experimental auto-spectral density of vibration for the non-

fluid-loaded plate, excited by the vertical splitter, for mode <2,3>. 
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Figure 5.11. Theoretical and experimental auto-spectral density of vibration for the non-

fluid-loaded plate, excited by the vertical splitter, for mode <3,3>. 

 

 The primary result to be taken from this section is that a non-fluid-loaded plate 

vibrates qualitatively the same independent of whether the forcing field is spatially 

homogeneous or non-homogeneously.  This was anticipated to be true and is consistent 

with what the theory of structural vibration would predict. 

 

5.3 Fluid Loaded Vibration with Spatially Homogeneous Forcing 

 The purpose of this section is to examine the vibration of a fluid-loaded foil under 

spatially-homogeneous excitation.  For this section, the setup outlined in Chapter 3 was 

used with no use of a splitter.  The plate was replaced with a 0.002 inch thick (0.0508 

mm) piece of aluminum; otherwise, the physical setup was unchanged.  The free stream 

velocity of the flow was reduced to approximately 9 m/s due to the increased response of 
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the foil to flow excitation.  The auto-spectral density of the vibration of the foil at the 

reference location is shown in Figure 5.12.  The first natural frequency measured in the 

experiment occurred at approximately 60 Hz.  The fluid loading factor at this frequency, 

as per Equation 2.15, is approximately β = 7.76, which is greater than 1, thus indicating 

that the foil is fluid loaded. 

 

Figure 5.12. Auto-spectral density of vibration at the reference location for the fluid-

loaded foil with standard, spatially-homogeneous turbulent boundary layer forcing. 

 

The experimentally-determined mode shapes for the fluid-loaded foil under 

spatially homogeneous wall pressure excitation are shown in Figure 5.13.  It should be 

noted that while the modes are similar to those of the non-fluid-loaded plate used in the 

previous experiments, there is a small asymmetry to the foil.  This is caused by 

limitations in the ability to provide perfectly uniform tension in the foil, but this does not 

affect the underlying physics of the problem.  In particular, one can note that the 
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maximum values of the peaks of the mode shapes are nearly identical for a given mode 

shape; the mode shapes were plotted as contours in this case in order to make this feature 

more noticeable. 

 

Figure 5.13. Measured mode shapes for the first four modes of vibration for the fluid-

loaded foil under the effects of spatially homogeneous forcing.  Frequency indicates the 

natural frequency of the mode. 

 

 Figure 5.14 shows the coherence plots for the same modes as those shown in 

Figure 5.13.  The peaks have a high coherence like was seen in the case of the non-fluid-

loaded plate.  Off of the peaks, there appears to be a small decay in coherence for 

increasing spatial separation for increasing modes.  This is different than the non-fluid-

loaded plate, where the coherence did not appear to decay as a function of spatial 
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separation from the reference location.  The conclusion of this section is that a fluid-

loaded structure under the effects of homogeneous forcing appears to vibrate with 

conventional mode shapes but does so with a lower coherence field than a non-fluid-

loaded structure. 

 

Figure 5.14. Measured coherence for the first four modes of vibration for the fluid-loaded 

foil under the effects of spatially homogeneous forcing.  Frequency indicates the natural 

frequency of the mode. 

 

5.4. Fluid Loaded Vibration with Spatially Non-Homogeneous Forcing 

 The purpose of this section is to examine the vibration of a fluid-loaded foil under 

the effects of a spatially non-homogeneous wall pressure field.  All previous cases were 
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examined in order to be compared to this final case.  The experimental setup is the same 

as the one used in Section 5.3: the vibrating structure was a 0.002 inch thick (0.0508 mm) 

piece of aluminum excited by 9m/s flow. The flow field exciting the structure in this 

section was altered using a splitter.  The vertical splitter and the horizontal splitter, 

outlined in Section 3.1, were used in separate experiments to create a spatially non-

homogeneous wall pressure field, with the former creating a strong spanwise non-

homogeneous wall pressure and the latter creating a strong streamwise non-homogeneous 

wall pressure.   In either situation, the first natural frequency was measured to be 66 Hz, 

for which the fluid loading factor is β = 7.06, which is a comparable fluid loading factor 

to the case of the fluid-loaded foil with spatially homogeneous wall pressure. 

 For the case of the vertical splitter, the auto-spectral density of vibration at the 

reference location is shown in Figure 5.15.  Figures 5.16 and 5.17 show the first four 

experimentally-determined mode shapes and the coherence at the corresponding 

frequencies.  Note that in Figures 5.16 and 5.17 that the bottom portion of the figure 

corresponds to the location where the flow is blocked.  Figures 5.18, 5.19, and 5.20 show 

the same plots when the horizontal splitter was used instead of the vertical splitter.  In 

Figures 5.19 and 5.20, the right side of the contour plots correspond to where the flow 

was blocked. 
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Figure 5.15. Auto-spectral density of vibration at the reference location for the fluid-

loaded foil under the effects of the vertical splitter. 

 

 

Figure 5.16. Measured mode shapes for the first four modes of vibration for the fluid-

loaded foil under the effects of the vertical splitter.  Frequency indicates the natural 

frequency of the mode. 
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Figure 5.17. Measured coherence for the first four modes of vibration for the fluid-loaded 

foil under the effects of the vertical splitter.  Frequency indicates the natural frequency of 

the mode. 

 

 

Figure 5.18. Auto-spectral density of vibration at the reference location for the fluid-

loaded foil under the effects of the horizontal splitter. 
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Figure 5.19. Measured mode shapes for the first four modes of vibration for the fluid-

loaded foil under the effects of the horizontal splitter.  Frequency indicates the natural 

frequency of the mode. 

 

 

Figure 5.20. Measured coherence for the first four modes of vibration for the fluid-loaded 

foil under the effects of the horizontal splitter.  Frequency indicates the natural frequency 

of the mode. 
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 The fluid-loaded foil excited by spatially homogeneous forcing showed a decay in 

coherence as a function of position in Section 5.3.  The cases of a fluid-loaded foil 

excited with a vertical or horizontal splitter show the same type of decay in coherence, 

though the coherence decay is far more severe when the horizontal splitter was used; such 

an effect was not observed for the case of the non-fluid-loaded plate excited with the 

vertical splitter.  This shows that the spatial coherence decay is a constant aspect of the 

fluid loaded structure. 

 Comparison of Figures 5.13, 5.16, and 5.19 shows that the mode shapes of the 

fluid-loaded structure can be altered by the forcing field.  For the case of the vertical 

splitter, the mode shapes for modes <1,1> and <2,1> are identical to those found when 

the structure was excited by a spatially homogeneous wall pressure.  This is because the 

forcing is spatially homogeneous in the streamwise direction.  However, modes <1,2> 

and <1,3> change when the vertical splitter is applied, with the magnitude of the peaks in 

the excited region being at least twice as large as the peaks in the unexcited region.  This 

is because the wall pressure is non-homogeneous in the spanwise direction, so there is a 

spanwise variation in the mode shapes.  In the case of the horizontal splitter, one observes 

a similar variation of mode shapes, except that the variation is even more severe.  Such a 

forcing-dependent change in the mode shape was not observed to occur for the case of 

the non-fluid-loaded plate when excited by the vertical splitter. 

 The results shown here, where the mode shapes can vary depending on the forcing 

applied to the structure, are a potentially significant alteration to the prediction of the 

vibration of fluid-loaded structures.  The current theories to predict such vibration assume 

that the mode shapes are completely dependent on the structural properties and do not 
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account for the mode shapes being a function of the forcing applied to the structure.  

These experiments were an exploratory measure to determine if such an interaction 

existed; determination of a method to predict the vibration of a fluid loaded structure 

excited by spatially non-homogeneous forcing is beyond the scope of this thesis.  A 

preliminary examination of the mode shapes presented in this section implies that it is 

probable that a simple model may not be able to predict the vibration of a fluid-loaded 

structure under the effects of non-homogeneous forcing.  For example, the mode shapes 

under the case of streamwise and spanwise non-homogeneous forms of forcing look 

substantially different.  Mode <1,2> when excited by a spanwise non-homogeneous 

forcing looks substantially different than mode <2,1> when excited by a streamwise non-

homogeneous forcing.   

 

5.5 Discussion: Explanation of the Change in Mode Shape Using a Discretized String 

Model 

 The purpose of this section is to provide an explanation of the physics which 

cause a fluid-loaded structure to vibrate with mode shapes that vary based on the spatial 

forcing characteristics.  It will be shown that the underlying physics can be explained 

through the structure having high damping, which can be caused by fluid loading.  To 

analytically model this, the equations of motion for a string will be discretized and solved 

numerically for high and low damping.  Comparison of the experimental results with 

results from the discretized string model will show similar results, validating the 

underlying physics. 
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 A string is the one-dimensional analog of a foil, as both structures lack bending 

stiffness.  As was outlined in Section 2.1, the equation of motion for a string is   

   ̈     ̇   ( )    ( ⃗  )  , (5.1) 

where 

 ( )   
   

      .  (5.2) 

The string was discretized into 100 discrete segments.  The string was assumed to be 

homogeneous, such that mass, damping, and tension was equal for all points along the 

string.  Mass and tension remained the same in all cases examined.  Damping was 

changed on a case-by-case basis to examine the results of different levels of damping.  

The discretized string was not designed to be identical to the experiment.  Instead, the 

damping was tuned until effects similar to what was observed in the experiment appeared 

in the model as well.  This allows the model to show the underlying physics but not to 

function as an actual prediction. 

In the discretized string model, forcing was assumed to be completely random 

with no coherence between forces spatially or temporally.  While this is an extreme case 

(as all real systems will have temporal and spatial coherence over a small enough scale of 

either), it is relatively similar to that experienced by the structure in Chapter 3, where the 

wall pressure has a spatial correlation length scale much smaller than the size of the plate.  

Three different forcing models were used: 

1)  When point-forcing was utilized, it involved forcing the structure only on 

mass n=30.  This was equivalent to random forcing of F30 while all other Fn=0 for n not 
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equal to 30.  None of the experimental cases utilized point-forcing.  However, point-

forcing allows one to examine the response of one point to forcing at another point.  This 

is instructive for understanding the coherence field of the structure under the effects of 

forcing over the full structure. 

2)  When homogeneous excitation was utilized, F1 through F100 were all 

randomly excited with the same amplitude.  This is similar to the experimental cases 

where a splitter was not used such that there was spatially-homogeneous excitation. 

3)  When “split” excitation was utilized, F1 through F30 were excited randomly 

with amplitudes ten times that of F31 through F100.  This was meant to simulate the effects 

of what the splitter would look like while still allowing for a small amount of excitation 

in the “blocked” region. 

 Five different cases of forcing and damping were analyzed with the discretized 

string.  These cases were in general examined because they mimic the experimental 

cases.  Table 5.2 outlines the five cases examined.  For these five cases, two primary 

results were examined: the mode shapes of the string and the coherence.  Mode shapes of 

the structure were determined through the Principle of Orthogonal Decomposition.  

Coherence was taken relative to point 30 at a frequency corresponding to the natural 

frequency of mode 2.  This point where coherence was taken relative to corresponds to 

the location where point forcing was applied or where the change in amplitude occurs for 

point and split forcing, respectively. 
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TABLE 5.2 

FIVE CASES ANALYZED BY THE DISCRETIZED STRING 

Case  Forcing Damping Purpose 

1 Point Low Demonstrate the mode shapes of a “standard” structure.  

This corresponds to the experimental results of Chapter 

4. 

2 Split Low Demonstrate that any spatial characteristics of exciting a 

standard structure will result in standard mode shapes (as 

per normal modal analysis).  This corresponds to the 

experimental results of Section 5.2. 

3 Point High Demonstrate how high damping changes the mode 

shapes.  There are no experimental cases to match this, 

but it allows one to observe why the coherence field for 

the fluid loaded structures has a spatial decay. 

4 Homog

eneous 

High Demonstrate that the homogeneous spatial excitation on 

a highly damped structure will result in mode shapes that 

appear homogeneous (symmetric) as well.    This 

corresponds to the experimental results of Section 5.3. 

5 Split High The true goal of the analysis; demonstrate that the non-

homogeneous spatial excitation of a highly damped 

structure will result in the structure vibrating in altered 

mode-shapes.  This corresponds to the experimental 

results of Section 5.4. 

 

 Case 1 is the discretized string with point forcing and low damping.  This case 

corresponds to something similar to a ping-test on a non-fluid-loaded structure.  The 

coherence for mode 2 and the first three mode shapes are shown in Figure 5.21.  The 

coherence is equal to unity everywhere except at the node.  The reason that the coherence 

is a nearly-constant unity is because all motion anywhere in the structure is induced by a 

single excitation.  The exception to this is at the node.   The vibration at the node is zero, 

so the coherence is equal to the limit of zero divided by zero (as both the auto-spectral 

density and cross-spectral density at this point are equal to zero), leading to an 

indeterminate value of coherence at the node.  However, mathematically, coherence must 
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be a value between 0 and 1, so “indeterminate” results in a more or less random number 

between 0 and 1.  Compared to the coherence of unity everywhere else in the structure, 

this indeterminate value will appear as a drop-off in coherence.  Lastly, the mode shapes 

here are the true mode shapes of the structure and are identical to the well-known mode 

shapes predicted by the theory of string vibration (specifically, sine functions). 

 

Figure 5.21. Coherence (for the frequency corresponding to mode 2) and first 3 mode 

shapes for discretized string case 1, a low-damped string excited by point forcing. 

 

 Case 2 is the discretized string with low damping excited by split forcing. The 

case of homogeneous excitation was skipped for brevity as the results of forcing a low-

damped string with homogeneous or split forcing are identical.  This case is the 

equivalent of the non-fluid-loaded plate whether it was excited with spatially 

homogeneous wall pressure or with spatially non-homogeneous wall pressure through use 

of the vertical splitter.  The results for the discretized string for this case are shown in 
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Figure 5.22.  The results look the same as in case 1, shown in Figure 5.21, but there are 

different implications behind these results.   

The coherence field looks the same for both cases 1 and 2 but for different 

reasons.  First, the vibration at the node location is still zero, so the coherence at this 

point is indeterminate.  The coherence everywhere except the node is still unity.  

However, unlike the case of point forcing, the vibration of the structure is caused by 

numerous, completely uncorrelated forces rather than a single excitation, so it is no 

longer necessary to have unity coherence.  The reason in this case for unity coherence is 

due to the low damping of the structure.  Whenever a force is placed on the structure, a 

wave is generated that travels through the structure, rebounding when it reaches the 

boundary condition.  Because of the low damping, the wave’s amplitude decays slowly, 

such that an excitation at a single point in space and time results in a wave that travels 

across the length of the structure, reflecting off the boundary conditions when they are 

reached, a very large number of times before decaying.  Because of this, a wave 

generated at any point in the structure will cause a response in any other point in the 

structure a very large number of times before the wave’s amplitude decays to negligible 

value.  The result is that no matter how the structure is excited, all points have nearly 

unity coherence relative to one another.   

Lastly, the mode shapes for the low-damped string are the same both in the case 

of point forcing and split forcing.  This result was expected as this is what is predicted by 

the well-established theories on string vibration.  However, these results help to validate 

the model.  Furthermore, this enforces the assertion that a structure at a natural frequency 
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will vibrate with the mode shape corresponding to that frequency independent of the 

forcing method used. 

 

Figure 5.22. Coherence (for the frequency corresponding to mode 2) and first 3 mode 

shapes for discretized string case 2, a low-damped string excited by split forcing. 

 

Case 3 is the discretized string with high damping excited by point forcing.  The 

high-damping corresponds to the experimental case of the fluid-loaded foil, but the point 

forcing does not correspond to the forcing method used in any of the experiments.  The 

coherence and first three mode shapes for this case can be seen in Figure 5.23.  The 

damping of the structure is sufficiently high that the waves decay quickly as they travel 

within the structure.  The result is that a wave will only interact with a limited portion of 

the structure before it decays substantially.  This is different than the low damping case 
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previously outlined, where a single wave interacts with each point in the structure 

numerous times (due to reflecting off the boundary conditions) before decaying 

significantly.  As a result, the vibration of the highly damped structure begins to look 

closer to waves on an infinite string than waves on a bounded string.  A wave may reflect 

off a boundary condition before significantly decaying, which differentiates it from an 

infinite string case, but the decay rate will be such that the wave’s amplitude will be 

substantially lower before reflecting off a second boundary condition.   

The effects of this decay can be seen in the modes shapes shown in Figure 5.23, 

where the amplitude of the mode in general decays as a function of spatial separation 

from the excitation point (point 30).  While each mode retains some similarities to those 

of the low-damped system (for example, mode 2 still has 2 peaks), the mode shapes are 

substantially shifted.  The peaks of these mode shapes have different magnitudes, as 

opposed to the low-damped string where the mode shapes have the same magnitude at 

each peak.  The mode shapes are also shifted, with the highest peak of each mode 

occurring at point 30, the point of excitation.  Because mode 3 has a node at this location 

for the low-damped case, this results in a substantial alteration of the mode shape for the 

high-damped string excited at this point.  The coherence maintains a constant value of 

unity, but as discussed in case 1, this is due to the structure being excited by a single 

force.   
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Figure 5.23. Coherence (for the frequency corresponding to mode 2) and first 3 mode 

shapes for discretized string case 3, a highly-damped string excited by point forcing. 

 

Case 4 is the discretized string with high damping excited by homogeneous 

forcing.  This corresponds to the experimental setup involving the fluid-loaded foil with 

spatially homogeneous forcing, which was examined in Section 5.3.  The coherence and 

first 3 mode shapes for this case can be seen in Figure 5.24.  The mode shapes appear 

identical to those found for all cases of the discretized string with low damping.  The 

coherence looks substantially different, however, with a spatial-dependent decay in 

coherence.  As noted in the previous case, the mode shape of a highly-damped string 

responding to point excitation is somewhat localized.  When such point excitations 
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occurs over the entire structure, as is the case with spatially homogeneous forcing, the 

result is that any given point is more strongly affected by forces spatially close to that 

point than points further away.  This is different than the low-damped string, where a 

force at any location affects all locations similarly.  This explains why there is a spatial 

decay in coherence. 

The mode shapes are symmetric due to the spatially homogeneous forcing.  Recall 

the mode shapes found for the case of point forcing on a highly-damped discretized 

string.  Such mode shapes are skewed towards the point of excitation.  If symmetric 

points on the structure are excited by statistically equal forcing, then the resulting 

vibration from the two excitations will be symmetric.  Spatially homogeneous forcing is a 

series of statistically symmetrically-forced points.   For this reason, while the resulting 

mode shapes may be the same for a highly-damped string excited by spatially 

homogeneous forcing and a low-damped string excited by split forcing, the underlying 

physics which causes these mode shapes is different for each case.  The different 

coherence in these cases is an indication of the differences in the underlying physics for 

these cases. 
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Figure 5.24. Coherence (for the frequency corresponding to mode 2) and first 3 mode 

shapes for discretized string case 4, a highly-damped string excited by homogeneous 

forcing. 

 

Case 5 is the discretized string with high damping excited by split forcing and is 

the final case to be examined.  Figure 5.25 shows the coherence and first 3 mode shapes 

for this case.  The analyses of the previous cases lead into explaining these results.  The 

coherence decays with spatial separation for the same reasons as the case of a highly-

damped string excited by homogeneous forcing.  Like the case of the highly-damped 

string with point forcing, the mode shapes are shifted towards the location with greater 

forcing.  The explanations for these previous two cases combined explain the underlying 

physics which cause the shifting of the mode shapes observed under the effects of 

spatially non-homogeneous forcing of a fluid-loaded structure. 
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Figure 5.25. Coherence (for the frequency corresponding to mode 2) and first 3 mode 

shapes for discretized string case 5, a highly-damped string excited by split forcing. 

 

 The previous 5 cases mimic several of the experimental setups and lead up to 

explaining why the mode shapes of a fluid-loaded structure change under the influence of 

spatially non-homogeneous forcing.  Figure 5.26 shows a comparison of the mode shape 

for mode 2 from two experimental cases and two of the discretized string cases.  Figure 

5.26 shows the mode shape of the low-damped string model under the effects of 

homogeneous forcing.  This figure also shows a spanwise cross-section of the mode 

shape determined from the experiment involving the non-fluid-loaded plate under the 

effects of homogeneous forcing, as detailed in Chapter 4.  These two mode shapes are the 
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experimental and analytical analog of one another, and the mode shapes appear very 

similar to one another, with the mode shapes being symmetric.   

Two other mode shapes are examined in Figure 5.26.  The third mode shape in 

Figure 5.26 is that determined from the high-damping discretized string model under the 

effects of split forcing.  The fourth curve in Figure 5.26 is the spanwise cross-section of 

the mode shape determined from the experiment involving the fluid-loaded foil under the 

effects of the vertical splitter forcing, as detailed in Section 5.3.  These mode shapes are 

the analytical and experimental analog of one another, and while the mode shapes are not 

identical, they do appear similar to one another.  In particular, there is a similar decrease 

in the amplitude of the mode shape in the region of the structure which is unexcited.  The 

discretized string model is somewhat of an oversimplification of the experiment, and the 

parameters of the discretized string model were not tuned to be the same as those in the 

experiment.  As a result, the discretized string model should not be considered a true 

prediction of the vibration of the fluid-loaded foil.   The similar trends are meant to show 

that it can be considered an explanation of the underlying physics. 
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Figure 5.26. Y-trace of the mode shapes of two experimental cases and two of the 

discretized string cases at mode 2. 

 

5.6 Chapter Conclusion 

 This chapter combined with Chapter 4 examined four unique structural cases, 

involving non-fluid-loaded and fluid-loaded structures excited by spatially 

homogeneously and spatially non-homogeneously.  As expected by established theory, 

non-fluid-loaded structures maintain similar mode shapes regardless of the method by 

which they are excited.  Fluid-loaded structures when excited in a spatially homogeneous 

method exhibit mode shapes which look similar to those of the non-fluid-loaded 

structures, though the change in the spatial coherence indicates the underlying physics 

which generate these mode shapes may be different.   
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When a fluid-loaded structure is excited in a spatially non-homogeneous method, 

the mode shapes change based on the forcing field.  A discretized string model was used 

to show that this is likely caused by the increased damping of the structure.  The work 

done here was an exploratory effort to determine if such a relationship existed; generation 

of a reliable method of solving such a system is beyond the scope of this work.  However, 

these results have important implications for fluid-loaded structures.  Modal analysis in 

general assumes mode shapes that are not dependent on the forcing function of the 

system.  As these results show at least some relationship between the forcing function 

and the mode shapes, such modal analysis should be used with caution on fluid-loaded 

structures.  Furthermore, because the resulting vibration is spatially asymmetric, systems 

under these conditions may become far more efficient acoustic radiators 
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CHAPTER 6 

INTERNAL ACOUSTIC SPECTRA OF A ROTOR WITHIN A DUCT OF FINITE 

LENGTH 

 

 The internal pressure spectra of a ducted rotor can be divided into two sources: 

hydrodynamic and acoustic.  The hydrodynamic pressure consists of those generated by 

the turbulent boundary layer along the duct wall.  This chapter will focus solely on the 

acoustics generated by the rotor.   Results reported in this chapter are largely the work of 

the author of this thesis based on prior work by Stephens and Morris [12] and Stephens et 

al. [13].   

The complete pressure field internal to a duct due to a rotor is the summation of 

the acoustic and hydrodynamic pressure fields; however, pending the specific geometry 

of the system, the acoustics and hydrodynamics may or may not interact in a significant 

way.  The duct acoustics are basically non-existent below a specific frequency, known as 

the “cut-on” frequency, whereas the hydrodynamic pressure spectra tends to decay with 

increasing frequency.  Thus, in some cases the hydrodynamics may be relatively 

negligible at the frequencies for which the acoustics are cut on.   

 The problem at hand involves a low Mach number rotor driving an axial flow 

through a duct which creates an acoustic pressure field by means of the unsteady 



www.manaraa.com

     
 

120 
 

aerodynamic forces on the rotor blades.  As discussed in Chapter 2, the sound is primarily 

generated by elongated turbulent eddies passing through the rotor; these eddies are 

sufficiently long that multiple rotor blades pass through the turbulent structure before it 

finishes convecting through the rotor.  The interaction of the rotor blade with the eddy 

generates an unsteady force on the blade, creating a sound source which is dipole-like in 

nature; this is the same acoustic source assumed in the modeling of flow noise, as 

outlined by the work of Stephens and Morris [12] and Stephens et al [13]. 

 

6.1 Theoretical Background on the Acoustic Pressure Spectra for a Ducted Rotor 

 If one assumes all acoustics in the duct are harmonic, then the governing equation 

for the acoustics in the duct is given by the harmonic Helmholtz equation as  

(     )    .    (6.1) 

For a rigid-walled infinite duct with low Mach number flow, the solution to Equation 

(6.1) is given by the Green's function 
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     |    |) 
    , (6.2) 

as given by Morse and Ingard [18].  Equation (6.2) represents the Green’s function for a 

monopole within an infinite duct.   

 The acoustic pressure at an observer location due to dipole forces distributed over 

the volume of the duct is given by Pierce [49] as 

 ( ⃗)  ∭  ⃗(  ⃗⃗⃗⃗ )
 

    ( ⃗   ⃗⃗⃗⃗ )    ∭ | (  ⃗⃗⃗⃗ )|
 

 ̂     ( ⃗   ⃗⃗⃗⃗ )     , (6.3) 
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where  ̂ is the unit vector in the direction of the dipole force.  In the present case the 

Mach number is assumed small and is not included in the acoustic propagation.  Stephens 

and Morris [50] demonstrated that Equation (6.3) is an acceptable assumption for 

understanding the radiation of sound outside of the duct.  The work of this chapter will 

focus on the circumferential mode amplitudes in the duct’s interior. 

 Equation (6.3) can be converted to a form involving the integration of the product 

of two scalar quantities by defining the dipole transfer function as 

         ̂(  ⃗⃗⃗⃗ )     ( ⃗   ⃗⃗⃗⃗ )  ,  (6.4) 

which allows the resulting pressure to be written as 
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       ( ⃗   ⃗⃗⃗⃗ )    . (6.5) 

If one defines a coordinate system such that x-x0 is non-negative, then the transfer 

function for a dipole in a rigid circular duct is given by 
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Here the following terminology is used: 

 x, r, and θ are the axial, radial, and circumferential location (respectively) of the 

observer 

 x0, r0, and θ0 are the axial, radial, and circumferential location (respectively) of 

the source 

 φ is the direction of the dipole, which for this particular setup is the rotor blade 

stagger angle 

 m, while mathematically simply an index for use in the summation, is physically 

representative of the circumferential mode number 

 n, while mathematically simply an index for use in the summation, is physically 

representative of the radial mode number 

 εd is equal to ½ for m=0 and equal to 1 otherwise (this represents the fact that m 

technically needs to be summed from -∞ to ∞ but that Equation (6.7) and 

Equation (6.8) are even functions with respect to m). 

 Jm is a Bessel function of the first kind. 

 μmn is a zero of derivative of Bessel function, defined such that J'm(μmn)=0, where 

n represents the n-th zero of this function for a fixed m. 

 k is the wave number, defined as k=ω/c0, with c0 being the speed of sound in the 

fluid medium, and in this system effectively is simply a value that represents 

frequency. 

 a is the radius of the duct. 
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 αmn is another way of representing the frequency in a mode-dependent way such 

that it is zero when the acoustics of mode <m,n> first become active and is 

defined as 

    √(
 

  
)
 

 (
   

 
)
 

   .   (6.9) 

 σ’mn is a function which determines the broadband magnitude of a given mode and 

is defined as 

        (  
  

   
 )   

 (   )  .   (6.10) 

 Equation (6.6) is the result of taking the dot product of the Green’s function for a 

dipole with the direction of the dipole force, while Equation (6.7) and Equation (6.8) are 

the axial and circumferential components of the ducted dipole transfer function, 

respectively. The total transfer function is a combination of these two effects, and the 

relative magnitudes of these factors are dependent on the direction of the dipole force.  In 

theory one should include the radial component of the dipole in these calculations as 

well.  However, the mechanics by which a rotor generates sound effectively guarantees 

that there will be no radial component for a rotor whose axis is aligned with the axis of 

the duct, so such calculations are neglected here.  In Equation (6.7), the term outside the 

summation represents a plane wave, which corresponds to mode <0,0>.  All terms in the 

summations of Equation (6.7) and Equation (6.8) contain modal components in the radial 

and/or circumferential directions.   

 With the exception of the plane wave term, αmn is the only frequency-dependent 

value in this expression.  Whenever αmn is imaginary, one will find that the exponential 

term in Equation (6.7) and Equation (6.8) decays relatively quickly with axial location.  
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Thus, in the far-field, mode-frequency combinations for which αmn is imaginary are 

referred to as being “cut off”.  For a given <m,n>, the frequency at which αmn is equal to 

zero is referred to as either the “cut-on” or “cut-off” frequency.  Frequencies above this 

will result in purely real values of αmn, in which case the final exponential term in 

Equation (6.7) and Equation (6.8) maintains a constant magnitude and only varies in 

phase.  For a fixed <m,n> mode, for increasing frequency the axial component of the 

dipole appears as a step function, jumping from zero below the cut-on frequency to a 

fixed magnitude above the cut-on frequency, though the phase will still vary with 

frequency.  The magnitude of the circumferential dipole exhibits a 1/αmn response 

centered at the cut-on frequency, spiking to an infinitely large magnitude at the cut-on 

frequency and quickly decaying for increasing frequency. 

 Using the transfer function for a dipole within a duct, the next step is to derive a 

transfer function for the rotor itself.  In a general sense, one would need to fill the entire 

volume of the duct with a distribution of dipoles to predict the response.  However, as 

discussed in Chapter 2, the primary source of sound for a rotor within a duct is caused by 

the interaction of the rotor blade tip region with the casing turbulent boundary layer.  If 

one assumes that the properties affecting the magnitude of the forces on the blade are 

relatively constant within this region and that the dipoles generated by these forces can be 

considered axially compact, then the net effect can be approximated as a ring of dipoles 

compact in both the axial and radial directions.  Specifically, the ring was approximated 

as being located at r0=0.95a based on previous measurements related to the size of the 

turbulent boundary layer and the tip clearance of the rotor. 
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 Because Equation (6.6) is linear, this ring of dipoles can be decomposed into a 

series of independent rings at the same spatial location, each of which represents a single 

circumferential mode oscillating at a single frequency.  Because the duct is axisymmetric, 

the strength of each mode must be constant and independent of circumferential location, 

but the phase of oscillation can vary along the ring.  For a particular mode and frequency, 

the time phase of oscillation can be expressed as 

  ( )         ( )   , (6.11) 

where ψM0 is some arbitrary shift based on the where time and location is selected as the 

reference, and M is the circumferential mode number.  Thus, for a single mode, the force 

concentration can be written as 

 ℱ  (          )

   
 

   ( )

  
  (        ( )) .  (6.12) 

FM0 is a representation of the magnitude of the force of the ring whereas the exponential 

is a constant-magnitude expression that expresses the phase of each location along the 

ring.  To gain a more physical interpretation of FM0, one can examine the case of M=0, 

for which all forces are in phase.  Integrating Equation (6.12) around the ring for this case 

one obtains 
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|     ( )  . (6.13) 

Thus, one sees that for mode M=0, FM0 is the dipole force if the entire rotor were 

considered a compact source at the center of the rotor.  While there is a value of FM0 for 

any mode M, the physical interpretation cannot be directly applied to modes above M=0; 
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the integration performed in Equation (6.13) will result in a value of zero for all non-zero 

modes. 

 With this in mind, the pressure generated by the dipole ring can be expressed as 
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Recognize that Equation (6.14) is effectively a triple summation due to the summation of 

the m and n terms contained within the expression of Tdipole.  However, due to the 

orthogonality of the sine and cosine functions with respect to θ0 found in both the force 

concentration and the dipole transfer function, only values of M=m will result in a non-

zero integral in Equation (6.14).   

This simplifies the expression in several ways.  First, all instances of M can be 

replaced with m and the summation over M can be removed.  It also implies that a dipole 

ring of mode m excites a pressure response only of mode m.  Because of this decoupling 

of the modes, the value of ψm0 will have no effect on the magnitude of the response and 

will only change the overall phase of the response.  Because in a statistically stationary 

system one phase is arbitrary, ψm0 can be set to an arbitrary value without changing the 

final results; for simplicity ψm0 is set to zero.   

The decoupling of the modes also places a practical limitation on the number of 

values of m which must be accounted for at a given frequency.  At any particular 

frequency, there is no need to include values of m for which the lowest cut-on frequency 
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is larger than the frequency of interest.  With this in mind, one can now express the 

radiated pressure of a single circumferential mode based on a transfer function for the 

rotor itself as 

|  ( )|     
( )|        ( )| ,  (6.15) 

where 
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Note that Trotor,m is defined as a unique rotor transfer function for each circumferential 

mode m.  Here, the      term corresponds to the axial contribution of the dipole while 

the      term corresponds to the tangential contribution of the dipole, which can be 

easily verified by setting      (axial alignment of the dipole) or        (tangential 

alignment of the dipole).  For a known duct geometry, the only unknown in Equation 

(6.15) and Equation (6.16) is the forcing value Fm0 for each mode.  Equation (6.17) can 

be further simplified by carrying out the integration, resulting in 
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When the complex terms inside the magnitude function are simplified, this becomes 
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Because the system is statistically stationary, one phase per mode is arbitrary (as the 

modes are decoupled).  However, the phase is unchanged for varying radial modes, and 

as such, the entire phase of each circumferential mode is arbitrary.  Thus, in a practical 

sense it is the magnitude of Equation (6.18) that is desired.  Because the duct is 

axisymmetric, the response will have the same magnitude at all angles.  The magnitude 

can be more easily expressed by examining Equation (6.18) for θ=0, which yields 
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Equation (6.19) is the final form of the rotor transfer function utilized in Equation (6.15).  

Varying the blade stagger angle will affect the relative magnitudes of the axial and 

circumferential components of the dipole transfer function, with Equation (6.19) being a 

summation of these two effects.  Also note for a mode that is cut on that the magnitude of 

the rotor transfer function will not change with axial location, though the phase will. 

Figure 6.1 shows the axial and tangential rotor transfer functions for 

circumferential mode 1 (m=1) for a duct with the same characteristics as the experiment 

but of infinite length.  The only frequency dependence occurs in the αmn term, which is 
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also a function of the <m,n> mode and the radius of the duct, which is a fixed quantity.  

When αmn is imaginary (which will occur for low frequencies), then the <m,n> mode is 

cut off and acoustics do not propagate through the duct at this mode.  When αmn is real, 

then the <m,n> mode is cut on.  These are the same characteristics that are present in the 

response for a single dipole.   

In Figure 6.1, three radial cut-ons can be seen at 989 Hz, 2865 Hz, and 4587 Hz, 

corresponding to radial modes n=1, n=2, and n=3.  As a function of frequency, axial 

dipoles for a single <m,n> mode cut on like a step function, changing from effectively a 

value of zero below the cut-on to some constant, non-zero, finite value above the cut-on.  

For tangential dipoles at a single <m,n> mode the transfer function still has a value of 

zero below cut on, but at the cut-on frequency the acoustic signal becomes infinitely 

large, then very quickly rolls off as 1/ αmn.  The net result of this is that for a rotor with 

both axial and tangential components, the tangential dipole will tend to dominate the 

response near a cut-on frequency and the axial dipole will tend to determine the value 

that the <m,n> mode approaches as frequency increases.  These cut-on characteristics for 

a single <m,n> mode can be seen in Figure 6.1 between 989 Hz and 2865 Hz, during 

which only the <1,1> mode has cut on.   
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Figure 6.1. Transfer function for an axially-aligned dipole (blue) and a tangentially-

aligned dipole (green) for the duct seen in the experiment but of infinite length. 

 

Above 2865 Hz, Figure 6.1 does not at first appear to obey the rules stated for 

axial and tangential dipoles; this is due to interference between multiple radial modes.  

First, recall that circumferential modes cannot interact with one another, so these 

interference patterns cannot occur for a single rotor in an infinite duct until at least two 

radial modes are present.  Independently, each radial mode still follows the rules 

previously outlined.   However, the phase of each of the radial modes is dependent on 

αmn•(x-x0).  For a fixed location and circumferential mode in the duct, the phase of the 

pressure spectra is only dependent on αmn, but both αmn and dαmn/df vary with n and f.  

Thus, both the phase and the rate of change of the phase with respect to frequency will 
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vary differently for each radial mode.  This means that the rings of pressure spectra 

generated by different radial mode will move in and out of phase with one another as 

frequency is varied.  This is why the Figure 6.1 shows fluctuations with frequency after 

the second and third cut-ons even though individually each mode has a fairly smooth 

dependence on frequency.  After the third cut-on, the fluctuations become even more 

severe as there are active more modes to move in and out of phase of one another.   

Because the phase is dependent on the product αmn•(x-x0), the specific axial 

location in the duct will also determine how quickly the phase changes, though these 

interference patterns will exist in some fashion regardless of location.  Furthermore, if 

one examines the equation for αmn, one will observe that dαmn/df is extremely large near 

the <m,n> cut-on, meaning that the fluctuations will occur over much smaller frequency 

scales near cut-on and then occur over large frequency scales away from the cut-on; this 

can also be seen in Figure 6.1. 

 Up to this point, all analytics were derived for an infinitely long duct.  Both the 

inlet and exit of the duct will appear as some combination of a pressure release and rigid 

wall boundary condition.  This boundary condition can be enforced in the model through 

use of a method of images by creating one image rotor for the inlet and one image rotor 

for the exit.  The image rotor created by the reflection across the exit then must be 

reflected across the inlet, while the image created by the reflection across the inlet must 

be reflected across the exit.  This process repeats for each new set of image rotors, 

creating an infinite string of image rotors required to simulate the boundary condition.  

Recall that the magnitude of the response of a rotor is not dependent on distance; thus, 

one cannot neglect a certain tier of image rotors simply due to being a large distance from 
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the observer location.  However, if the reflection coefficient has a magnitude less than 

one, which is a practical assumption for the inlet/exit of a duct, then each additional tier 

of image rotors will have decreasing strengths.  The number of tiers of image rotors 

required to be modeled is dependent on when the strength of the image rotor is small 

enough to be negligible due to the decrease in strength caused by the reflection 

coefficient. For reflection coefficients only moderately less than one, this can potentially 

be a slowly converging process. 

 Figure 6.2 shows the transfer function for circumferential mode 1 for an infinite 

duct, a finite duct with 1 tier of image rotors, and a finite duct with 3 tiers of image 

rotors.  For the finite duct cases, one can observe fluctuations in the transfer functions 

over relatively small changes in frequencies.  These are interference patterns caused by a 

mechanism that is similar to how two radial modes of a single rotor cause interference 

patterns.  Recall that the phase of a particular mode for a single rotor is given by αmn•(x-

x0).  αmn does not vary between each of the rotors (including both the real rotor and the 

image rotors).  However, even for only a single radial mode, each rotor will have a 

different value of x-x0 due to being located at different axial locations, which results in 

the same interference pattern mechanism found in the case of a single rotor with multiple 

radial modes.  Unlike the case of a single rotor, these fluctuations occur even with only 

one radial mode cut on, as can be seen from 950 Hz to 2850 Hz in Figure 6.2, which 

corresponds to the first radial mode of circumferential mode 1.  Furthermore, by 

comparing the cases of 1 tier of image rotors and 3 tiers of image rotors, one observes 

that adding more tiers adds additional fluctuations that are smaller in magnitude and 

occur over smaller frequency scales.  The smaller magnitudes are due to the reflection 
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coefficient reducing the strength of the image rotors on these additional tiers.  The 

smaller frequency scales are due to the increase value of x-x0 associated with each tier of 

rotor; this results in a more rapidly changing phase, and thus the signals move in and out 

of phase over smaller changes in frequency. 

 

Figure 6.2. Transfer function for mode 1 for infinite duct, finite duct with 1 tier of image 

rotors, and 3 tiers of image rotors assuming the conditions found in the experiment. 

 

 A second effect of the interference patterns created by the image sources is that 

the transfer function becomes much more sensitive to changes in the axial location of the 

observer as shown in Figure 6.3.  The basic pattern of the transfer function is relatively 

unaffected by the shift in the observer, but the exact locations of the peaks and troughs of 
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the interference patterns can shift.  At any specific frequency, the strength of the transfer 

function can be changed dramatically due to small changes in the axial location of either 

the source or the observer.  Similarly, changes in the length of the duct can elicit similar 

changes as this will change the location of the image rotors.   The shifts become more 

severe as the frequency increases higher above the cut-on frequency; this effect is visible 

in Figure 6.3. 

 

Figure 6.3. Transfer function for mode <1,1> as the observer is moved 2.5%  and 10% 

assuming the conditions found in the experiment. 

 

 To this point, examples have been primarily examined for circumferential mode 

1.  The reason for this is simply because circumferential mode 1 is active at lower 

frequencies than higher modes, and as such, it is easier to view the effects of multiple 
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radial modes by looking at circumferential mode 1.  However, the effects demonstrated 

for circumferential mode 1 applies to all circumferential modes. 

 

6.2 Wall Pressure Measurements 

Far-field acoustic measurements were obtained by placing a using Bruel & Kjaer 

6.35mm capacitance based microphone on-axis outside of the duct.  Figure 6.4 shows the 

measurements obtained from the far-field measurement at a rotor speed of 4000 rpm. 

 

Figure 6.4. Far-field pressure from ducted rotor running at 4000 rpm. 

 

Wall pressure data were obtained simultaneously at 32 circumferentially spaced 

locations for 51 different rotor speeds for the experimental setup detailed in Section 3.2.  

The data were initially processed by computing the spatial (circumferential) discrete 

Fourier transform of the instantaneous wall pressure.  The auto-spectral density of the 
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modal amplitudes, Φpp,m(f), were then computed, effectively giving the amplitude of 

pressure as a function of rotor speed, circumferential mode number, and frequency.  

Finally, these results were non-dimensionalized as 

     
 ( )  
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 )
   ,  (6.20) 

where ρ0 is the density of the fluid medium, Utip is the tangential velocity at the rotor tip, 

and D is the duct diameter. 

 Figure 6.5 shows G
*

pp,m at a rotor speed of 4000 rpm as a function of 

circumferential mode number m and frequency.  The results show a distinctive “V” shape 

that is a result of the acoustic cut-ons.  Values along the V correspond to cut-on 

thresholds where the duct is resonating, values outside the V correspond to areas where 

the acoustics are not yet cut on, and values inside the V correspond to areas where the 

acoustics are cut on.   
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Figure 6.5. Auto-spectral density of wall pressure for a rotor speed of 4000 rpm as a 

function of frequency and circumferential mode number.  Color axis equals 

10log10(G
*

pp,m). 

 

There are notably high amplitudes of the unsteady surface pressure in Figure 6.5 

at frequencies lower than the cut-on frequencies.  These amplitudes are a result of the 

turbulent rotor wake and duct boundary layer.  These pressure values are predominantly 

below 1000 Hz and appear to have little dependence on the mode number, m.   

 Analysis of the acoustic pressure requires removal of the hydrodynamic 

contribution to the pressure.  Here we assume that the pressure is a summation of the 

acoustic and hydrodynamic contributions.  The hydrodynamic pressure was found from 

the data presented in Figure 6.5 by assuming that the pressure for a given circumferential 
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mode is entirely hydrodynamic for f < fcut-on.  The auto-spectral densities of the 

hydrodynamic pressure of several of the higher modes are shown in Figure 6.6.  These 

results show little dependence on the circumferential mode, as noted above.  

Furthermore, the results were found to scale well with rotor speed using Equation (6.20).  

Due to these factors, the dimensionless hydrodynamic pressure spectra was estimated as a 

function of frequency by averaging the dimensionless spectra for all mode, frequency, 

and rotor combinations where acoustics were cut off.  This hydrodynamic wall pressure 

spectra was subtracted from the measured wall pressure at a given rotor speed (when 

redimensionalized and scaled for the appropriate rotor speed) to obtain the acoustic wall 

pressure spectra.  Note that all further references to wall pressure in this chapter will be 

referring solely to the acoustic wall pressure derived from this method. 

 

Figure 6.6. Hydrodynamic wall pressure for various circumferential modes. 
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6.3 F-T Separation 

 The acoustic wall pressure is the result of both the rotor’s transfer function and 

forcing function.  When analyzing the acoustic wall pressure induced by a single rotor 

speed, one cannot determine whether features of the response are due to the transfer 

function, the forcing function, or both.  For this reason, when determining the accuracy of 

the acoustic wall pressure model, it is advantageous to individually examine the transfer 

function and forcing function rather than solely the acoustic wall pressure. 

 Through use of a force – transfer function separation (i.e. F-T separation) 

algorithm, experimental wall pressure data taken at various speeds can be used to 

determine the transfer function and the forcing function which generated the 

aforementioned wall pressures.  It is beyond the scope of this thesis to provide a detailed 

explanation of the operation of an F-T separation algorithm.  A brief summary will be 

supplied for the benefit of the reader.  The algorithm used in this chapter is based on the 

algorithm used by Stephens and Morris [12]. 

 The F-T separation algorithm operates under the assumption that, at each 

frequency, the pressure is equal to the product of the transfer function and forcing 

function.  The transfer function is assumed to have no dependence on rotor speed, while 

the magnitude and frequency of features of the forcing function are assumed to scale with 

an unknown power of the rotor speed.  As a result, as the rotor speed is increased, 

features of the pressure spectra which increase in frequency are attributed to the forcing 

function, while stationary features are attributed to the transfer function.  The F-T 

separation algorithm provides a mathematical method by which pressure data at a series 
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of rotor speeds are used to quantify this transfer function and forcing function.  The 

transfer and forcing functions derived through this method were known as the 

experimental transfer function and experimental forcing function, respectively. 

 The F-T separation algorithm is only capable of identifying features in the transfer 

and forcing function, but it is not capable of independently determining the broadband 

magnitude of either function.  To account for this, the experimental transfer function was 

given a broadband magnitude equal to that predicted by Equation (6.19).  This allows the 

broadband magnitude of the experimental forcing function to be determined but has no 

effect on the features of the spectra for either function.  

 

6.4 Experimentally Derived Forcing Function 

 The experimental forcing functions for modes -3 through 3 are plotted versus 

frequency normalized by blade passing frequency in Figure 6.7.  Figure 6.7 also shows 

the theoretically-derived forcing function predicted through the approach noise model 

derived by Stephens and Morris [12,50].  Figure 6.7 is plotted as a function of the 

normalized forcing function, defined as 

ℱ  
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  ,   (6.21) 

where [Φff(f)]rotor is the auto-spectral density of the force and rtip is the radius of the rotor.  

Because of the normalization, each curve in Figure 6.7 is an aggregation of the data of 

multiple rotor speeds. 
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Figure 6.7. Normalized forcing predicted by experimental data as a function of 

frequency. 

 

 The approach noise model derived by Stephens and Morris [12,50] assumes that 

the acoustics generated by a ducted rotor can be approximated by a single, axially-aligned 

dipole located at the center of the rotor.  For an observer in the far-field, the m=0 dipole 

ring will appear as a single dipole due to the entire ring being in phase for this mode.  

Thus, one would expect the approach noise model and the dipole ring model for m=0 to 

have a similar normalized forcing function, and Figure 6.7 shows relatively good 

agreement between these models.   
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For a cut off mode, the acoustic pressure has a constant value of zero with no 

spectral features, so the F-T separation algorithm cannot be applied to this region.  This 

results in Figure 6.7 having little information for higher modes at lower frequencies.  The 

force spectral density appears to be relatively independent of mode.  The force spectral 

density is significantly larger at multiples of the blade passing frequency, which is 

consistent with the findings of several authors outlined in Chapter 2. 

 

6.5 Experimentally Derived Transfer Function 

The experimental transfer function derived from the F-T separation is shown in 

Figure 6.8, which shows the same overall V shape as the pressure spectra.  In order to 

better see the details of the transfer function better, Figures 6.9 and 6.10 show the 

experimental transfer functions for circumferential modes 1 and 2, respectively, as a 

function of frequency.  These are plotted alongside the theoretical transfer function for an 

infinite duct and the predicted transfer function for a finite duct with 3 tiers of image 

rotors.  The overall trend of the experimental transfer function matches the overall trend 

in the infinite duct transfer function, including the fluctuations that were predicted by the 

interference of multiple radial modes interacting.   

The experimental transfer function also qualitatively matches the finite duct 

transfer functions, showing the same types of interference patterns predicted from the 

interactions of the image rotors.  While the scales over which these fluctuations occur are 

fairly similar in the experimental and theoretical cases, the exact locations and 

magnitudes of the small-frequency-scale peaks do not match.  This is attributed to 
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uncertainties in the exact parameters of the duct, as small changes in any dimension can 

cause fairly significant shifts in the exact locations of these peaks; this can include 

uncertainties in the reflection coefficient of the duct as well as the effective length of the 

duct for acoustic reflections.  Furthermore, the changes in axial location which can cause 

large changes to the transfer function are small enough that it is possible that it challenges 

the assumption of being able to approximate the rotor as being formed of dipoles which 

are compact in the axial direction.  

 

Figure 6.8. Experimental transfer function results within the duct as a function of mode 

(below cut-on, values are set to a low value as the values are undefined).  Color values 

indicate 20 log10 of the transfer function in Pa/N. 
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Figure 6.9. Experimental transfer function and predicted transfer functions for 

circumferential mode 1. 

 

 

Figure 6.10. Experimental transfer function and predicted transfer functions for 

circumferential mode 2. 
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Further justification that the small-frequency fluctuations are generated by 

interference patterns as previously outlined can be obtained by viewing the experimental 

transfer function in the αmn domain.  For a frequency range over which a given 

circumferential mode has only one active radial mode, the phase of each rotor (both real 

and image) has a phase of αm1(x-x0), where x0 varies with each rotor but αm1 does not.  

Thus, the overall signal should appear as a harmonic signal (with the amplitude possibly 

changing with αm1) when plotted in the αm1 domain.  Figure 6.11 shows circumferential 

mode 1 plotted in the α11 domain from 995 Hz to 2000 Hz, a range which only contains a 

single radial mode.  This plot shows a strongly harmonic pattern, further validating the 

theoretical model.  Note that this method only works for a single radial cut-on; with two 

radial cut-ons, a portion of the signal will scale with αm1 and a portion of the signal will 

scale with αm2, making it irrelevant to plot the transfer function versus αm1 or αm2. 

 

Figure 6.11. Experimental transfer function for circumferential mode 1 with for a single 

radial cut-on in the α11 domain. 
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CHAPTER 7 

 

STRUCTURAL VIBRATION OF A FLUID-LOADED DUCT EXCITED BY AN 

INTERNAL ROTOR 

 

 This chapter involves measurement of the vibration of the fluid-loaded duct 

outlined in Chapter 3 when excited by an internal flow induced by the rotor.  Knowledge 

of the vibration of the duct wall is important to the prediction of the acoustics radiated 

from the duct.  The duct is lightly fluid loaded with a fluid loading factor of 

approximately one, placing it between the fluid loading factors of the two cases 

rectangular structural vibration cases examined in Chapters 4 and 5. 

 The work of this chapter is a final case combining the work of the previous 

chapters.  Chapter 4 developed the MPI, which will be necessary for the duct vibration 

measurements of this chapter.  Chapter 5 examined the effects of fluid loading, which 

will assist in explaining aspects of the results demonstrated in this chapter.  The internal 

pressure field which excites the duct was examined in Chapter 6. 

 Duct vibration follows similar basic principles to that of a flat, bounded structure, 

but the cyclical boundary condition results in a much more complicated transfer function.  

A full examination of the vibration of a fluid loaded duct would be too much subject 

matter for the scope of this document.  However, this chapter will examine duct vibration 
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in the context of the fluid loaded vibration examined in Chapter 5.  This is an exploratory 

measure towards identifying important aspects of fluid loaded duct vibration. 

 

7.1. Vibration of a Single Point 

 For the duct setup detailed in Section 3.2, the reference laser was stationed at an 

arbitrary point located slightly off-center from the center of the duct in the axial direction.  

Due to the lack of bounds in the circumferential direction, there are no fixed nodal points 

in the circumferential direction; combined with the duct being axisymmetric, points are 

arbitrary in the circumferential direction.  Figure 7.1 shows the auto-spectral density of 

vibration of the reference location, while Figure 7.2 shows the auto-spectral density of 

the reference location over a smaller range of frequencies.  The lowest natural frequency 

occurs at 267 Hz.  Above this frequency, local maxima in the auto-spectral density of 

vibration occur over increasingly small differences in frequency due to the high modal 

density of the structure. 
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Figure 7.1. Auto-spectral density of vibration for the reference location at 4000 rpm. 

 

 

Figure 7.2. Auto-spectral density of vibration for the reference location at 4000 rpm 

(zoomed). 
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 The reference location was scanned for approximately 16 seconds at rotor speeds 

from 0 rpm to 5000 rpm at 10 rpm increments.  The auto-spectral density as a function of 

frequency and rotor speed from these scans is shown in Figure 7.3.  Figure 7.4 shows the 

vibration of the reference laser over a more limited subset of speeds and frequencies. 

 
Figure 7.3. Auto-spectral density of duct vibration as a function of frequency and rotor 

speed.  Color axis refers to log10 of the auto-spectral density of vibration divided by 1 

mm
2
/s

2
/Hz. 
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Figure 7.4. Auto-spectral density of duct vibration as a function of frequency and rotor 

speed over a limited set of rotor speeds and frequencies.  Color axis refers to log10 of the 

auto-spectral density divided by 1 mm
2
/s

2
/Hz. 

 

Several characteristics can be identified in Figure 7.3.  The first duct natural 

frequency occurs at 267 Hz, as can be seen by the high-intensity region across all rotor 

speeds (i.e. horizontal line) at this frequency.  For this frequency, all acoustic modes are 

cut off, as discussed in Chapter 6, since the lowest acoustic cut-on is at approximately 

1000 Hz.  Thus, the earliest duct modes are excited almost entirely by hydrodynamic 

effects.   

At the lowest frequencies, the modal density is low enough that individual 

frequencies may not have a resonating mode.  At these frequencies, local peaks in the 
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vibration may be due to a modal resonance at that frequency.  The modal density 

increases quickly for increasing frequency, such that above the first few natural 

frequencies every frequency will have multiple resonating modes.   

High-intensity regions for all rotor speeds (i.e. horizontal lines) can be identified 

at approximately 1000 Hz and 1600 Hz.  As was noted in Chapter 6, these frequencies 

correspond to the first two circumferential acoustic modes cutting on.  These frequencies 

are substantially greater than the first natural frequency of the duct but result in 

noticeable peaks in the duct vibration.  This indicates that that the acoustic cut-ons induce 

a large enough forcing field to result in significant duct vibration even though the 

acoustics are inactive until a much higher frequency than the first natural frequency of the 

duct. 

 The high intensity regions which have a frequency that scales with rotor speed 

(i.e. the diagonal lines in Figure 7.3) correspond to the blade rate of the rotor.  For 

example, at 5000 rpm, such blade passing rates occur at 833 Hz, 1667 Hz, etc., 

corresponding to the first, second, etc. blade passing frequency of the rotor at that speed.  

Intersection of these blade passing frequencies with acoustic cut-ons provides for 

exceptionally large structural vibration. 

 

7.2 Spatial Characteristics of Vibration 

 Vibration scans along a circumferential and axial line were taken at a rotor speed 

of 4000 rpm.  Each point was scanned for 131 seconds at a sampling rate of 32 kHz.  
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Utilizing a mirror, a greater arc of the duct was acquired during the circumferential scan 

than the laser had direct line of sight with. 

 Figures 7.5 and 7.6 show the MPI for the circumferential and axial scans at 267 

Hz, the first natural frequency and highest-amplitude mode of the structure.  Figures 7.7 

and 7.8 show the coherence of the circumferential and axial scans at this same frequency.  

In the circumferential plots, the reference laser is located at 0 degrees. 

 
Figure 7.5. Circumferential duct MPI at 267 Hz for a rotor speed of 4000 rpm. 
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Figure 7.6. Axial duct MPI at 267 Hz for a rotor speed of 4000 rpm. 

 

 
Figure 7.7. Circumferential duct coherence at 267 Hz for a rotor speed of 4000 rpm. 
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Figure 7.8. Axial duct coherence at 267 Hz for a rotor speed of 4000 rpm. 

 

 Somewhat similar results are seen for the fluid-loaded duct cases shown above as 

were seen for the case of the fluid-loaded rectangular foil.  Both plots show fluctuating 

values over a relatively consistent length scale, which is indicative of a sine wave mode 

shape, as would be predicted for the circumferential direction of a duct.  Both the 

circumferential MPI and coherence show decay in magnitude for increasing spatial 

separation from the reference location, which can be explained by the results 

demonstrated in Chapter 5.  In particular, the high damping associated with the fluid 

loading of the duct causes the mode shapes to be localized within the structure.  This is 

distinct from what would be predicted for the vibration of a non-fluid-loaded duct in the 
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circumferential direction, where theoretically the mode shape should have a constant 

magnitude for all peaks in the structure, appearing as a sine wave. 

It should be noted that there is one substantial difference between the MPI of the 

duct and the fluid-loaded foil.  In the case of the foil, due to the structure being bounded, 

nodes occur at fixed locations in the structure.  These nodal locations may change based 

on the forcing field, but for statistically stationary forcing, the nodes will remain at fixed 

locations.  For the case of the duct, there are no bounds in the circumferential direction, 

so nodal locations do not remain fixed; rather, they have a tendency to spin around the 

structure.  As such, nodal locations can only be defined either at a fixed instance in time 

or relative to other points in the structure.  In the case of MPI and coherence, the nodal 

locations are defined relative to the location of the reference signal, with a point being 

defined as a node at a given frequency if the reference location is at a maximum while the 

node location has a value of zero; by contrast, the nodes of a bounded plate will have zero 

vibration at a given frequency regardless of the reference location chosen.   

This effect may explain the “smearing” seen in the circumferential coherence plot.  

In the coherence plots for the bounded structures in Chapters 4 and 5, the coherence tends 

to be relatively constant as a function of spatial location (though this constant value was 

not necessarily unity in the fluid-loaded cases), dropping quickly towards a value of zero 

only close to the node locations.  In the duct case, for increasing circumferential 

separation, the coherence hits a local maximum over very small amounts of 

circumferential difference and seems to be constantly changing as a function of spatial 

separation (i.e. the coherence does not plateau to a constant value off of the nodal 

locations).  However, the coherence at the nodal locations in general does not go to zero.  
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Both of these factors are distinct from coherence seen in the cases of the bounded, 

rectangular plates and foils.  This can potentially be explained by the node locations not 

being fixed in space.  Essentially, the node locations “spin” around the structure, with 

even the reference location functioning as a node at times.  Points that are not vibrating at 

an instant in time will be incoherent with all other points in that instant in time.  

Excluding the spatial decay in coherence induced by fluid loading, two points will be 

coherent when neither is near a node and incoherent when one is exactly on a node at one 

instant in time.  The overall coherence between the two points would then be a function 

of the percentage of time when one is located near a node and another is not.  Because the 

modes spin in the structure, this would never go truly to zero, but would cause the 

roughly step-function like coherence field observed in a bounded structure to “smear” 

into the coherence profile seen in Figure 7.7. 

 The axial MPI of the duct shows a relatively similar mode shape to the one-

dimensional eigenfunction predicted by Leissa for mode 1, as shown in Figure 4.1.  There 

is a small spatial coherence decay along the axial scan, as shown in Figure 7.8.  It is 

unclear if this is due to the coherence decay associated with fluid-loading or if this decay 

in coherence is poor signal-to-noise due to the relatively low vibration near the end 

points, as can be observed in Figure 7.6. 

 A single frequency was chosen for this analysis, but the results were found to be 

similar for all frequencies, with the exception of a different mode number at different 

frequencies.  The coherence and MPI at several other frequencies are shown in Figures 

7.9-7.12.  These frequencies correspond to frequencies where the auto-spectral density of 
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vibration had a localized peak, but due to the high modal density of the duct, these the 

vibration at these frequencies may be the result of multiple resonating modes. 

 
Figure 7.9. Duct MPI and coherence for 277 Hz. 
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Figure 7.10. Duct MPI and coherence for 291 Hz. 
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Figure 7.11. Duct MPI and coherence for 357 Hz. 
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Figure 7.12. Duct MPI and coherence for 410 Hz. 

 

 

7.3 Dispersion Curve 

 In general, each mode of vibration for a structure has a unique natural frequency.  

For rectangular structures, mode <m,n> has lower natural frequencies for decreasing m 

and n.  For a duct, vibration for low circumferential mode number m is dominated by 

tension-induced stiffness, like a membrane, while vibration for high circumferential mode 

number m is dominated by bending stiffness, like a plate.  Moderate mode numbers are a 
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combination of these two effects.  The natural frequency in the membrane regime 

decreases with increasing mode number, while the natural frequency in the bending 

stiffness regime increases with increasing mode number.  As a result, unlike rectangular 

structures, the lowest natural frequency does not occur for a minimum of m for a duct, but 

rather, occurs for when the addition of these two effects are at a minimum.   

The plot of the natural frequency as a function of circumferential mode number m 

and axial mode number n is known as the dispersion curve.  Ivanyuta and Finkelshtein 

[51] used the Galerkin method to derive the natural frequencies for a duct as   
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and Ω is the non-dimensional frequency parameter defined as 
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Here, ν is Poisson’s ratio, m is the circumferential mode number, n is the axial mode 

number, h is the duct thickness, and L is the axial length of the duct. 

Figure 7.13 shows the theoretical dispersion curve for a duct with the 

characteristics outlined in Section 3.2 for the first three axial modes.  Note the dispersion 

curve is only valid at integer mode number values; Figure 7.13 is drawn as solid lines 

only to make it more easily readable.  In Figure 7.13, one can readily observe that the 
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modal density (defined as the number of resonating modes per change in frequency) 

increases very quickly for increasing frequency.  Even when only one axial mode is 

active, both the left side (tension-induced) and the right side (bending stiffness) sides of 

the curve contribute contain new resonating modes for small changes in frequency, 

leading to relatively high modal density.  Once more axial modes becomes active, the 

modal density becomes substantially higher. 

 

Figure 7.13. Theoretical dispersion curve for nickel duct.  Legend refers to axial mode 

number. 

 

 Circumferential vibration data were taken at a rotor speed of 4000 rpm.  At the 

lowest resonating frequencies, a circumferential surface shape was generated using MPI, 

as detailed in Chapter 4.  The mode number of the vibration was identified from the 
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surface shape, and plotted on a dispersion curve, as shown in Figure 7.14.  Figure 7.14 

contains three plots.  The base dispersion curve corresponds to the theoretical dispersion 

curve for axial mode n=1, as shown in Figure 7.13.  The measured values in Figure 7.14 

are those determined experimentally through MPI.  Lastly, the fluid-loaded dispersion 

curve corresponds to the dispersion curve for n=1 resulting from a changing the density 

and effective length of the duct in order to roughly fit the data. 

 

Figure 7.14. Dispersion curve for axial mode 1 of the duct.  Contains the theoretical 

dispersion curve, the dispersion curve for modified duct properties, and the 

experimentally-determined dispersion curve through use of MPI. 

 

 The fluid-loaded dispersion curve in Figure 7.14, which causes the dispersion 

curve to match the data, was generated analytically by tripling the density of the duct and 

reducing the effective length of the duct by 25%.  It is not immediately clear why these 

parameters change in this fashion, but the result does create a relatively strong fit 
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between the data and the theoretical dispersion curve.  Fluid-loading has an effect similar 

to increasing the mass of a structure, which could explain the increase in density, though 

a tripling of density is substantially higher than what would be predicted for a fluid 

loading factor of approximately 1.   

 

7.4 Discretized Ring Model 

 To examine the underlying physics creating the vibration field of the nickel duct, 

a discretized ring model was created.  A schematic of this ring model is shown in Figure 

7.15.  This model is the nickel duct analog to the string model examined in Section 5.5.  

The model consists of a ring discretized into a series of point masses.  The ring is 

attached to rigid walls on either side.  This is similar to a single circumferential slice of 

the duct, where the rigid wall is meant to be a simple simulation of the effects of a 

parallel circumferential circular slice.  Without this, the ring has an insufficient number 

of boundary conditions, and any force will cause the entire ring to move through space.  

200 discrete masses were used in the simulation. 
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Figure 7.15. Schematic of discretized ring model. 

 

 High damping was applied to the ring model with random but statistically 

homogeneous forcing at all points.  The simulation was allowed to run to a steady state.  

MPI and coherence (reference point: 106 degrees) of the first active mode taken from the 

steady state of the simulation is shown in Figures 7.16 and 7.17.  This simulation was not 

designed to provide exact predictions of the vibration.  Figures 7.16 and 7.17, determined 

under the effects of high damping, appear relatively similar to the MPI and coherence of 

the first mode, as displayed in Section 7.2. 
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Figure 7.16. MPI of first mode of ring model. 

 

 
Figure 7.17. Coherence of first mode of ring model. 
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7.5 Conclusions 

 The results here are an exploratory examination into the vibration of a fluid-

loaded duct due to an internal rotor.  Due to the complexity of the system, it is beyond the 

scope of this document to undergo a more in depth analysis.  It was found that the 

theoretical dispersion curve appears to match the measured dispersion curve of the lowest 

frequencies if the theoretical dispersion curve is given a higher density and lower 

effective length.  The fluid-loading effects detailed in Chapter 5 can be observed in the 

circumferential MPI of the fluid-loaded duct, with a spatial decay in the coherence field 

and mode shape, which would not normally be predicted by modal analysis theory.  A 

discretized ring model with high damping was found to have a similar MPI and 

coherence at its first mode compared to those measured experimentally, though this 

model was not meant to allow for exact predictions of the duct’s vibration.  These form 

only the beginnings of an examination of the vibration of a fluid-loaded duct but appear 

to explain the underlying physics associated with the problem. 
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CHAPTER 8 

 

CONCLUSIONS 

 

 This document has covered multiple topics both experimentally and analytically 

related to flow-induced structural vibration. 

 Chapter 4 developed a method known as Magnitude-Phase Identification (MPI) to 

experimentally determine modal characteristics of a structure while only using two-point 

measurements.  This chapter also detailed two methods of decomposing the vibration of a 

structure into its mode shapes: minimization of error and modal projection.  Using two 

laser Doppler velocimeters (LDV), measurements were taken of a non-fluid-loaded, 

clamped, rectangular plate excited by a spatially homogeneous turbulent boundary layer 

flow.  Through use of MPI, the auto-spectral density of vibration for each mode was 

found.  For either decomposition method, the results were found to agree relatively well 

with the theoretical modal vibration spectra. 

 Chapter 5 examined the simultaneous effects of fluid-loading and spatially non-

homogeneous forcing on a bounded rectangular structure.  The same experimental setup 

as Chapter 4 was used, but in some cases the non-fluid-loaded plate was replaced with a 

heavily fluid loaded foil, and in some places a substantial spatial non-homogeneity was 

placed into the wall pressure field.  Experimental results showed that individually, neither 
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fluid-loading nor the spatial non-homogeneity in the wall pressure resulted in a 

significant change in the measured mode shapes of the structure.  When both effects were 

combined, the mode shapes of the structure became significantly skewed towards the 

points of higher forcing, demonstrating that the mode shapes of a fluid-loaded structure 

can be dependent on the forcing field applied, a characteristic not accounted for in modal 

analysis theory.  Furthermore, these mode shapes are potentially substantially 

asymmetric, which can lead to significantly increased acoustic radiation in the far-field.  

Using a string model, it was shown that these characteristic changes can occur for a 

highly damped system.  Fluid-loading is known to have the effect of increasing the 

damping of a system. 

 Chapter 6 examined the internal acoustic wall pressure field due to a ducted rotor.  

The analysis assumes that the rotor’s acoustics can be approximated by replacing the 

rotor with a continuous ring of dipoles located at the rotor blade tip, and then applying 

the theoretical transfer function for a dipole within a duct to the dipole ring.  The 

resulting transfer function is known as the rotor transfer function, and is mathematically 

equal to the magnitude of the acoustics for a given circumferential mode number 

generated by a dipole ring of unitary magnitude for that same circumferential mode 

number.  The finite length of the duct is accounted for by using a method of images at the 

duct inlet and exit.  Both the interaction of multiple radial modes and the interaction of 

the image rotors each create significant frequency-dependent interference patterns, which 

experimentally might be discounted as noise but actually appears in the resulting 

theoretical function.  Using forcing – transfer function separation, experimental wall 

pressure data was separated into forcing components and transfer function components.  
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The forcing components resulting from this analysis were found to agree well with 

previously predicted forcing functions.  The measured transfer function was found to 

agree relatively well with the theoretical transfer function predicted through this analysis. 

 Chapter 7 examined the vibration of a fluid-loaded duct excited by the rotor 

outlined in Chapter 6.  Two-point laser measurements were used to obtain circumferential 

vibration data of the duct, using the MPI technique developed in Chapter 4.  The resulting 

dispersion curve was found to agree well at low frequencies with the theoretical 

dispersion curve for significantly increased wall density and a reduced effective axial 

duct length.  Circumferential MPI had similar results to the case of the fluid-loaded 

rectangular foil, with a reduction in the magnitude of the MPI and coherence with 

increasing separation distance from the reference location.  A discretized ring model with 

high damping was found to have a similar MPI and coherence at its first mode compared 

to those measured experimentally.   
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APPENDIX A 

 

EXPERIMENTAL WAVE NUMBER TRANSFORMS FOR RECTANGULAR 

STRUCTURES 

 

Figures A.1-A.3 show the wave number transforms for the first three measured mode 

shapes for four cases: 

1) The non-fluid-loaded (thick), steel plate excited by spatially homogeneous 

forcing, as outlined in Chapter 4. 

2) The fluid-loaded (thin), aluminum foil excited by spatially homogeneous forcing, 

as outlined in Section 5.3. 

3) The fluid-loaded (thin), aluminum foil excited by the vertical splitter such that the 

wall pressure was non-homogeneous in the spanwise direction, as outlined in 

Section 5.4. 

4) The fluid-loaded (thin), aluminum foil excited by the horizontal splitter such that 

the wall pressure was non-homogeneous in the streamwise direction, as outlined 

in Section 5.4. 

In these figures, forcing methods which cause a skewing of the mode shape are 

highlighted in red. 
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Figure A.1. Wavenumber transform for mode <1,1> excited by various methods.  Color 

axis corresponds to log10 of the surface shape at the natural frequency divided by (m/s). 
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Figure A.2. Wavenumber transform for mode <2,1> excited by various methods.  Color 

axis corresponds to log10 of the surface shape at the natural frequency divided by (m/s). 
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Figure A.3. Wavenumber transform for mode <1,2> excited by various methods.  Color 

axis corresponds to log10 of the surface shape at the natural frequency divided by (m/s). 

 

 

 

 The shape functions for the non-fluid-loaded plate excited by a spatially 

homogeneous wall pressure field in Figures A.1-A.3 are similar to the theoretical shape 

function.  This is anticipated because the mode shapes closely match the theoretical mode 

shapes.  The fluid-loaded foil excited by spatially homogeneous forcing is similar to this 

but appears rotated slightly.  This is because the mode shapes under these conditions are 

shifted slightly due to slightly non-uniform tension. 

 When non-homogeneous forcing does not induce a shift in the mode shape in the 

fluid-loaded foil, there is no significant change in the mode shape.  This includes all cases 

for mode <1,1>, the vertical splitter for mode <2,1>, and the horizontal splitter for mode 
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<1,2>.  For these cases, the wall pressure was spatially homogeneous in the direction 

where the mode shape has multiple lobes.  As outlined in Chapter 5, these cases have no 

significant alteration of the mode shape, and as such, the shape function remains 

unchanged. 

 In Figure A.2, the horizontal splitter corresponds to a case where there was a 

significant change in the mode shape due to non-homogeneous forcing.  In Figure A.3, 

the vertical splitter corresponds to a case where there was a significant change in the 

mode-shape due to non-homogeneous forcing.  Both of these cases were examined in 

Chapter 5.  For these cases, the shape functions becomes more circular, centered around 

kx=0, ky=0.  While distinct lobes are noticeable, the peaks merge together somewhat.  In 

other cases, the shape function had large valleys between the lobes, whereas in these two 

cases, when the mode shape becomes asymmetric, the valleys disappear somewhat. 
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